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ABSTRACT
There are two basic models for the on-chip memory in CMP sys-
tems: hardware-managed coherent caches and software-managed
streaming memory. This paper performs a direct comparison of the
two models under the same set of assumptions about technology,
area, and computational capabilities. The goal is to quantify how
and when they differ in terms of performance, energy consump-
tion, bandwidth requirements, and latency tolerance for general-
purpose CMPs. We demonstrate that for data-parallel applications,
the cache-based and streaming models perform and scale equally
well. For certain applications with little data reuse, streaming scales
better due to better bandwidth use and macroscopic software pre-
fetching. However, the introduction of techniques such as hard-
ware prefetching and non-allocating stores to the cache-based mod-
el eliminates the streaming advantage. Overall, our results indicate
that there is not sufficient advantage in building streaming memory
systems where all on-chip memory structures are explicitly man-
aged. On the other hand, we show that streaming at the program-
ming model level is particularly beneficial, even with the cache-
based model, as it enhances locality and creates opportunities for
bandwidth optimizations. Moreover, we observe that stream pro-
gramming is actually easier with the cache-based model because
the hardware guarantees correct, best-effort execution even when
the programmer cannot fully regularize an application’s code.

Categories and Subject Descriptors: B.3.2 [Memory Struc-
tures]: Design Styles; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures (Multiprocessors); D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms: Performance, Design

Keywords: Chip multiprocessors, coherent caches, streaming
memory, parallel programming, locality optimizations

1. INTRODUCTION
The scaling limitations of uniprocessors [2] have led to an

industry-wide turn towards chip multiprocessor (CMP) systems.
CMPs are becoming ubiquitous in all computing domains. Un-
like uniprocessors, which have a dominant, well-understood model
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for on-chip memory structures, there is no widespread agreement
on the memory model for CMP designs. The choice of memory
model can significantly impact efficiency in terms of performance,
energy consumption, and scalability. Moreover, it is closely cou-
pled with the choice of parallel programming model, which in turn
affects ease of use. While it is possible to map any programming
model to any memory model, it is typically more efficient if the
programming model builds upon the basic principles of the mem-
ory model.

Similar to larger parallel systems [8], there are two basic mem-
ory models for contemporary CMP systems: hardware-managed,
implicitly-addressed, coherent caches and software-managed, ex-
plicitly-addressed, local memories (also called streaming memory).
With the cache-based model, all on-chip storage is used for private
and shared caches that are kept coherent by hardware. The ad-
vantage is that the hardware provides best-effort locality and com-
munication management, even when the access and sharing pat-
terns are difficult to statically analyze. With the streaming memory
model, part of the on-chip storage is organized as independently
addressable structures. Explicit accesses and DMA transfers are
needed to move data to and from off-chip memory or between two
on-chip structures. The advantage of streaming memory is that it
provides software with full flexibility on locality and communica-
tion management in terms of addressing, granularity, and replace-
ment policy. Since communication is explicit, it can also be proac-
tive, unlike the mostly reactive behavior of the cache-based model.
Hence, streaming allows software to exploit producer-consumer lo-
cality, avoid redundant write-backs for temporary results, manage
selective data replication, and perform application-specific caching
and macroscopic prefetching. Streaming eliminates the communi-
cation overhead and hardware complexity of the coordination pro-
tocol needed for cache coherence. On the other hand, it introduces
software complexity, since either the programmer or the compiler
must explicitly manage locality and communication.

Traditional desktop and enterprise applications are difficult to
analyze and favor cache-based systems. In contrast, many upcom-
ing applications from the multimedia, graphics, physical simula-
tion, and scientific computing domains are being targeted by both
cache-based [4, 45] and streaming [3, 39, 9, 16, 32] systems. The
debate is particularly interesting vis-à-vis the latest game consoles.
The CMPs for the Xbox360 and PlayStation 3 differ dramatically
in their on-chip memory model, as Xbox360’s Xenon processor is
a cache-based CMP and PlayStation 3’s Cell processor is a stream-
ing memory CMP.Hence, it is interesting to evaluate if streaming
provides specific benefits to this domain, or if using a cache-based
approach across all application domains should be preferable.

The goal of this paper is to compare the efficiency of the two
memory models under the same set of assumptions about tech-



nology, area, and computational capabilities. Specifically, we are
interested in answering the following questions: How do the two
models compare in terms of overall performance and energy con-
sumption? How does the comparison change as we scale the num-
ber or compute throughput of the processor cores? How sensitive
is each model to bandwidth or latency variations? We believe that
such a direct comparison will provide valuable information for the
CMP architecture debate and generate some guidelines for the de-
velopment of future systems.

The major conclusions from our comparison are:

• For data-parallel applications with abundant data reuse, the
two models perform and scale equally well. Caches are as ef-
fective as software-managed memories at capturing locality
and reducing average memory access time. For some of these
applications, streaming has an energy advantage of 10% to
25% over write-allocate caches because it avoids superflu-
ous refills on output data streams. Using a no-write-allocate
policy for output data in the cache-based system reduces the
streaming advantage.

• For applications without significant data reuse, macroscopic
prefetching (double-buffering) provides streaming memory
systems with a performance advantage when we scale the
number and computational capabilities of the cores. The use
of hardware prefetching with the cache-based model elim-
inates the streaming advantage for some latency-bound ap-
plications. There are also cases where streaming performs
worse, such as when it requires redundant copying of data or
extra computation in order to manage local stores.

• Our results indicate that a pure streaming memory model is
not sufficiently advantageous at the memory system level.
With the addition of prefetching and non-allocating writes,
the cache-based model provides similar performance, energy,
and bandwidth behavior. On the other hand, we found that
“streaming” at the programming model level is very impor-
tant, even with the cache-based model. Properly blocking an
application’s working set, exposing producer-consumer lo-
cality, and identifying output-only data leads to significant
efficiency gains. Moreover, stream programming leads to
code that requires coarser-grain and lower-frequency coher-
ence and consistency in a cache-based system. This obser-
vation will be increasingly relevant as CMPs scale to much
larger numbers of cores.

• Finally, we observe that stream programming is actually eas-
ier with the cache-based model because the hardware guar-
antees correct, best-effort execution, even when the program-
mer cannot fully regularize an application’s code. With the
streaming memory model, the software must orchestrate lo-
cality and communication perfectly, even for irregular codes.

The rest of the paper is organized as follows. Section 2 summa-
rizes the two memory models and discusses their advantages and
drawbacks. Section 3 presents the architectural framework for our
comparison and Section 4 describes the experimental methodology.
Section 5 analyzes our evaluation results. Section 6 focuses on
streaming at the programming level and its interactions with CMP
architecture. Section 7 addresses limitations in our methodology.
Finally, Section 8 reviews related work and Section 9 concludes
the paper.
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Table 1. The design space for on-chip memory for CMPs. This
work focuses on the two highlighted options: coherent cache-based
and streaming memory. The third practical option, incoherent
cache-based, is briefly discussed in Section 7.

2. ON-CHIP MEMORY MODELS FOR CHIP
MULTIPROCESSORS

General-purpose systems are designed around a computational
model and a memory model. The computational model defines the
organization of execution resources and register files and may fol-
low some combination of the the superscalar, VLIW, vector, or
SIMD approaches. The memory model defines the organization
of on-chip and off-chip memories, as well as the communication
mechanisms between the various computation and memory units.
The two models are linked, and an efficient system is carefully de-
signed along both dimensions. However, we believe that the on-
chip memory model creates more interesting challenges for CMPs.
First, it is the one that changes most dramatically compared to
uniprocessor designs. Second, the memory model has broader im-
plications on both software and hardware. Assuming we can move
the data close to the execution units in an efficient manner, it is
not difficult to select the proper computational model based on the
type(s) of parallelism available in the computation kernels.

For both the cache-based and streaming models, certain aspects
of the on-chip memory system are set by VLSI constraints such as
wire delay [18]. Every node in the CMP system is directly associ-
ated with a limited amount of storage (first-level memory) that can
be accessed within a small number of cycles. Nodes communicate
by exchanging packets over an on-chip network that can range from
a simple bus to a hierarchical structure. Additional memory struc-
tures (second-level memory) are also connected to the network fab-
ric. The system scales with technology by increasing the number
of nodes, the size of the network, and the capacity of second-level
storage. Eventually, the scale of a CMP design may be limited by
off-chip bandwidth or energy consumption [20].

Although they are under the same VLSI constraints, the cache-
based and streaming models differ significantly in the way they
manage data locality and inter-processor communication. As shown
in Table 1, the cache-based model relies on hardware mechanisms
for both, while the streaming model delegates management to soft-
ware. The rest of this section overviews the protocol and operation
for each memory model for CMP systems.

2.1 Coherent Cache-based Model
With the cache-based model [8], the only directly addressable

storage is the off-chip memory. All on-chip storage is used for
caches with hardware management of locality and communication.
As cores perform memory accesses, the caches attempt to cap-
ture the application’s working set by fetching or replacing data at
the granularity of cache blocks. The cores communicate implic-
itly through loads and stores to the single memory image. Since
many caches may store copies of a specific address, it is neces-
sary to query multiple caches on load and store requests and po-
tentially invalidate entries to keep caches coherent. A coherence
protocol, such as MESI, minimizes the cases when remote cache



lookups are necessary. Remote lookups can be distributed through
a broadcast mechanism or by first consulting a directory structure.
The cores synchronize using atomic operations such as compare-
and-swap. Cache-based systems must also provide event order-
ing guarantees within and across cores following some consistency
model [1]. Caching, coherence, synchronization, and consistency
are implemented in hardware.

Coherent caching techniques were developed for board-level and
cabinet-level systems (SMPs and DSMs), for which communica-
tion latency ranges from tens to hundreds of cycles. In CMPs,
coherence signals travel within one chip, where latency is much
lower and bandwidth is much higher. Consequently, even algo-
rithms with non-trivial amounts of communication and synchro-
nization can scale reasonably well. Moreover, the efficient design
points for coherent caching in CMPs are likely to be different from
those for SMP and DSM systems.

2.2 Streaming Memory Model
With streaming, the local memory for data in each core is a sep-

arately addressable structure, called a scratch-pad, local store, or
stream register file. We adopt the term local store in this work.
Software is responsible for managing locality and communication
across local stores. Software has full flexibility in placing fre-
quently accessed data in local stores with respect to location, gran-
ularity, replacement policy, allocation policy, and even the number
of copies. For applications with statically analyzable access pat-
terns, software can exploit this flexibility to minimize communi-
cation and overlap it with useful computation in the best possible
application-specific way. Data are communicated between local
stores or to and from off-chip memory using explicit DMA trans-
fers. The cores can access their local stores as FIFO queues or as
randomly indexed structures [23]. The streaming model requires
DMA engines, but no other special hardware support for coherence
or consistency.

Streaming is essentially message-passing applied to CMP de-
signs, though there are some important differences compared to
conventional message-passing for clusters and massively parallel
systems [8]. First, communication is always orchestrated at the
user-level, and its overhead is low. Next, messages are exchanged
at the first level of the memory hierarchy, not the last one. Since the
communicating cores are on the same chip, communication laten-
cies are low and bandwidth is high. Finally, software manages both
the communication between cores and the communication between
a core and off-chip memory.

The discussion above separates the two memory models from the
selection of a computation model. The streaming memory model is
general and has already been used with VLIW/SIMD systems [3],
RISC cores [39], vector processors [30], and even DSPs [32]. The
cache-based model can be used with any of these computation mod-
els as well.

2.3 Qualitative Comparison
When considering the memory system alone, we find several

ways in which cache-based and streaming memory systems may
differ: bandwidth utilization, latency tolerance, performance, en-
ergy consumption, and cost. This section summarizes each of these
differences in a qualitative manner.

Off-chip Bandwidth & Local Memory Utilization: The cache-
based model leads to bandwidth and storage capacity waste on
sparsely strided memory accesses. In the absence of spatial locality,
manipulating data at the granularity of wide cache lines is wasteful.
Streaming memory systems, by virtue of strided scatter and gather
DMA transfers, can use the minimum memory channel bandwidth

necessary to deliver data, and also compact the data within the local
store. Note, however, that memory and interconnect channels are
typically optimized for block transfers and may not be bandwidth
efficient for strided or scatter/gather accesses.

Caching can also waste off-chip bandwidth on unnecessary re-
fills for output data. Because caches often use write-allocate poli-
cies, store misses force memory reads before the data are over-
written in the cache. If an application has disjoint input and out-
put streams, the refills may waste a significant percentage of band-
width. Similarly, caching can waste bandwidth on write-backs of
dead temporary data. A streaming system does not suffer from
these problems, as the output and temporary buffers are managed
explicitly. Output data are sent off-chip without refills, and dead
temporary data can be ignored, as they are not mapped to off-chip
addresses. To mitigate the refill problem, cache-based systems can
use a no-write-allocate policy. In this case, it is necessary to group
store data in write buffers before forwarding them to memory in
order to avoid wasting bandwidth on narrow writes [4]. Another
approach is to use cache control instructions, such as “Prepare For
Store,” [34] that instruct the cache to allocate a cache line but avoid
retrieval of the old values from memory. Similarly, temporary data
can be marked invalid at the end of a computation [7, 43]. In any
case, software must determine when to use these mechanisms.

Streaming systems may also waste bandwidth and storage ca-
pacity on programs with statically unpredictable, irregular data pat-
terns. A streaming system can sometimes cope with these patterns
by fetching a superset of the needed input data. Alternatively, at
the cost of enduring long latencies, the system could use a DMA
transfer to collect required data on demand from main memory be-
fore each computational task. For programs that operate on over-
lapping blocks or graph structures with multiple references to the
same data, the streaming system may naively re-fetch data. This
can be avoided through increased address generation complexity or
software caching. Finally, for applications that fetch a block and
update some of its elements in-place, a streaming system will often
write back the whole block to memory at the end of the computa-
tion, even if some data were not updated. In contrast to all of these
scenarios, cache-based systems perform load and store accesses on
demand, and hence only move cache lines as required. They may
even search for copies of the required data in other on-chip caches
before going off-chip.

Latency Tolerance: The cache-based model is traditionally re-
active, meaning that a miss must occur before a fetch is triggered.
Memory latency can be hidden using hardware prefetching tech-
niques, which detect repetitive access patterns and issue memory
accesses ahead of time, or proactive software prefetching. In prac-
tice, the DMA transfers in the streaming memory model are an
efficient and accurate form of software prefetching. They can hide
a significant amount of latency, especially if double-buffering is
used. Unlike hardware prefetching, which requires a few misses
before a pattern is detected (microscopic view), a DMA access can
start arbitrarily early (macroscopic view) and can capture both reg-
ular and irregular (scatter/gather) accesses.

Performance: From the discussion so far, one can conclude that
streaming memory may have a performance or scaling advantage
for regular applications, due to potentially better latency tolerance
and better usage of off-chip bandwidth or local storage. These ad-
vantages are important only if latency, bandwidth, or local storage
capacity are significant bottlenecks to begin with. For example,
reducing the number of misses is unimportant for a computation-
ally intensive application that already has very good locality. In
the event that an application is bandwidth-bound, latency tolerance
measures will be ineffective. A drawback for streaming, even with



regular code, is that it often has to execute additional instructions
to set up DMA transfers. For applications with unpredictable data
access patterns or control flow, a streaming system may execute
a significantly higher number of instructions than that of a cache-
based system in order to produce predictable patterns or to use the
local store to emulate a software cache.

Energy Consumption: Any performance advantage also trans-
lates to an energy advantage, as it allows us to turn off the system
early or scale down its power supply and clock frequency. Stream-
ing accesses to the first-level storage eliminate the energy overhead
of caches (tag access and tag comparison). The cache-based model
consumes additional energy for on-chip coherence traffic, snoop
requests or directory lookups. Moreover, efficient use of the avail-
able off-chip bandwidth by either of the two models (through fewer
transfers or messages) reduces the energy consumption by the in-
terconnect network and main memory.

Complexity & Cost: It is difficult to make accurate estimates of
hardware cost without comparable implementations. The hardware
for the cache-based model is generally more complex to design and
verify, as coherence, synchronization, consistency, and prefetching
interact in subtle ways. Still, reuse across server, desktop, and em-
bedded CMP designs can significantly reduce such costs. On the
other hand, streaming passes the complexity to software, the com-
piler, and/or the programmer. For applications in the synchronous
data-flow, DSP, or dense matrix domains, it is often straight for-
ward to express a streaming algorithm. For other applications, it
is non-trivial, and a single good algorithm is often a research con-
tribution in itself [11, 14]. Finally, complexity and cost must also
be considered with scaling in mind. A memory model has an ad-
vantage if it allows efficient use of more cores without the need for
disproportional increases in bandwidth or some other resource in
the memory system.

3. CMP ARCHITECTURE FRAMEWORK
We compare the two models using the CMP architecture shown

in Figure 1. There are numerous design parameters in a CMP sys-
tem, and evaluating the two models under all possible combinations
is infeasible. Hence, we start with a baseline system that represents
a practical design point and vary only the key parameters that inter-
act significantly with the on-chip memory system.

3.1 Baseline Architecture
Our CMP design is based on in-order processors similar to Pi-

ranha [5], RAW [39], Ultrasparc T1 [25], and Xbox360 [4]. Such
CMPs have been shown to be efficient for multimedia, communi-
cations, and throughput computing workloads as they provide high
compute density without the area and power overhead of out-of-
order processors [10]. We use the Tensilica Xtensa LX, 3-way
VLIW core [22]. Tensilica cores have been used in several em-
bedded CMP designs, including the 188-core Cisco Metro router
chip [12]. We also performed experiments with a single-issue
Xtensa core that produced similar results for the memory model
comparison. The VLIW core is consistently faster by 1.6x to 2x
for the applications we studied. The core has 3 slots per instruc-
tion, with up to 2 slots for floating-point operations and up to 1
slot for loads and stores. Due to time constraints, we do not use
the Tensilica SIMD extensions at this point. Nevertheless, Sec-
tion 5.3 includes an experiment that evaluates the efficiency of each
model with processors that provide higher computational through-
put. Each processor has a 16-KByte, 2-way set-associative instruc-
tion cache. The fixed amount of local data storage is used differ-
ently in each memory model.

We explore systems with 1 to 16 cores using a hierarchical inter-
connect similar to that suggested by [26]. We group cores in clus-
ters of four with a wide, bidirectional bus (local network) provid-
ing the necessary interconnect. The cluster structure allows for fast
communication between neighboring cores. If threads are mapped
intelligently, the intra-cluster bus will handle most of the core-to-
core communication. A global crossbar connects the clusters to the
second-level storage. There is buffering at all interfaces to toler-
ate arbitration latencies and ensure efficient bandwidth use at each
level. The hierarchical interconnect provides sufficient bandwidth,
while avoiding the bottlenecks of long wires and centralized arbi-
tration [26]. Finally, the secondary storage communicates to off-
chip memory through some number of memory channels.

Table 2 presents the parameters of the CMP system. We vary the
number of cores, the core clock frequency, the available off-chip
bandwidth, and the degree of hardware prefetching. We keep the
capacity of the first-level data-storage constant.

3.2 Cache-based Implementation
For the cache-based model, the first-level data storage in each

core is organized as a 32-KByte, 2-way set-associative data cache.
The second-level cache is a 512-KByte, 16-way set-associative
cache. Both caches use a write-back, write-allocate policy. Co-
herence is maintained using the MESI write-invalidate protocol.
Coherence requests are propagated in steps over the hierarchical
interconnect. First, they are broadcast to other processors within
the cluster. If the cache-line is not available or the request cannot
be satisfied within one cluster (e.g., upgrade request), it is broadcast
to all other clusters as well. Snooping requests from other cores oc-
cupy the data cache for one cycle, forcing the core to stall if it tries
to do a load/store access in the same cycle. Each core includes a
store-buffer that allows loads to bypass store misses. As a result,
the consistency model is weak. Since the processors are in-order,
it is easy to provide sufficient MSHRs for the maximum possible
number of concurrent misses.

Each core additionally includes a hardware stream-based pre-
fetch engine that places data directly in the L1 cache. Modeled
after the tagged prefetcher described in [41], the prefetcher keeps
a history of the last 8 cache misses for identifying sequential ac-
cesses, runs a configurable number of cache lines ahead of the latest
cache miss, and tracks 4 separate access streams. Our experiments
include hardware prefetching only when explicitly stated.

We use POSIX threads to manually parallelize and tune appli-
cations [27]. The applications used are regular and use locks to
implement efficient task-queues and barriers to synchronize SPMD
code. Higher-level programming models, such as OpenMP, are also
applicable to these applications.

3.3 Streaming Implementation
For the streaming model, the first-level data storage in each core

is split between a 24-KByte local store and an 8-KByte cache. The
small cache is used for stack data and global variables. It is par-
ticularly useful for the sequential portions of the code and helps
simplify the programming and compilation of the streaming por-
tion as well. The 24-KByte local store is indexed as a random ac-
cess memory. Our implementation also provides hardware support
for FIFO accesses to the local store, but we did not use this feature
with any of our applications. Each core has a DMA engine that
supports sequential, strided, and indexed transfers, as well as com-
mand queuing. At any point, the DMA engine may have up to 16
32-byte outstanding accesses.

The local store is effectively smaller than a 24-KByte cache,
since it has no tag or control bits overhead. We do not raise the
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Figure 1. The architecture of the CMP system with up to 16 processors. The core organizations for the cache-based and streaming models
are shown on the left and right side respectively.

size of the local store, since the small increment (2 KBytes) does
not make a difference for our applications. Still, the energy con-
sumption model accounts correctly for the reduced capacity. The
secondary storage is again organized as a 16-way set-associative
cache. L2 caches are useful with stream processors, as they cap-
ture long-term reuse patterns and avoid expensive accesses to main
memory [36, 9]. The L2 cache avoids refills on write misses when
DMA transfers overwrite entire lines.

We developed streaming code using a simple library for DMA
transfers within threaded C code. We manually applied the proper
blocking factor and double-buffering in order to overlap DMA trans-
fers with useful computation. We also run multiple computational
kernels on each data block to benefit from producer-consumer lo-
cality without additional memory accesses or write-backs for inter-
mediate results. Higher-level stream programming models should
be applicable to most of our applications [15, 13]. In some cases,
the DMA library uses a scheduling thread that queues pending
transfers. We avoid taking up a whole core for this thread by mul-
tiplexing it with an application thread. The performance impact is
negligible.

4. METHODOLOGY

4.1 Simulation and Energy Modeling
We used Tensilica’s modeling tools to construct a CMP simula-

tor for both memory models [40]. The simulator captures all stall
and contention events in the core pipeline and the memory system.
Table 2 summarizes the major system characteristics and the pa-
rameters we varied for this study. The default values are shown in
bold. The applications were compiled with Tensilica’s optimizing
compiler at the -O3 optimization level. We fast-forward over the
initialization for each application but simulate the rest to comple-
tion, excluding 179.art for which we measure 10 invocations of the
train match function.

We also developed an energy model for the architecture in a
90nm CMOS process (1.0V power supply). For the cores, the
model combines usage statistics (instruction mix, functional unit
utilization, stalls and idle cycles, etc.) with energy data from the
layout of actual Tensilica designs at 600MHz in 90nm. The en-
ergy consumed by on-chip memory structures is calculated using
CACTI 4.1 [38], which includes a leakage power model and im-
proved circuit models compared to CACTI 3. Interconnect energy
is calculated based on our measured activity statistics and scaled
power measurements from [19]. The energy consumption for off-
chip DRAM is derived from DRAMsim [42]. We model the effect
of leakage and clock gating on energy at all levels of the model.

4.2 Applications
Table 3 presents the set of applications used for this study. They

represent applications from the multimedia, graphics, physical sim-
ulation, DSP, and data management domains. Such applications
have been used to evaluate and motivate the development of stream-
ing architectures. MPEG-2, H.264, Raytracer, JPEG, and Stereo
Depth Extraction are compute-intensive applications and show ex-
ceptionally good cache performance despite their large datasets.
They exhibit good spatial or temporal locality and have enough
computation per data element to amortize the penalty for any misses.
FEM is a scientific application, but has about the same compute in-
tensity as multimedia applications. The remaining applications—
Bitonic Sort, Merge Sort, FIR, and 179.art—perform a relatively
small computation on each input element. They require consid-
erably higher off-chip bandwidth and are sensitive to memory la-
tency.

We manually optimized both versions of each application to elim-
inate bottlenecks and schedule its parallelism in the best possible
way. Whenever appropriate, we applied the same data-locality opti-
mizations (i.e. blocking, producer-consumer, etc.) to both models.
In Section 6, we explore the impact of data-locality optimizations.
The following is a brief description of how each application was
parallelized.

MPEG-2 and H.264 are parallelized at the macroblock level.
Both dynamically assign macroblocks to cores using a task queue.
Macroblocks are entirely data-parallel in MPEG-2. In H.264, we
schedule the processing of dependent macroblocks so as to mini-
mize the length of the critical execution path. With the CIF reso-
lution video frames we encode for this study, the macroblock par-
allelism available in H.264 is limited. Stereo Depth Extraction is
parallelized by dividing input frames into 32x32 blocks and stati-
cally assigning them to processors.

KD-tree Raytracer is parallelized across camera rays. We assign
rays to processors in chunks to improve locality. Our streaming
version reads the KD-tree from the cache instead of streaming it
with a DMA controller. JPEG Encode and JPEG Decode are par-
allelized across input images, in a manner similar to that done by
an image thumbnail browser. Note that Encode reads a lot of data
but outputs little; Decode behaves in the opposite way. The Fi-
nite Element Method (FEM) is parallelized across mesh cells. The
FIR filter has 16 taps and is parallelized across long strips of sam-
ples. 179.art is parallelized across F1 neurons; this application is
composed of several data-parallel vector operations and reductions
between which we place barriers.

Merge Sort and Bitonic Sort are parallelized across sub-arrays of
a large input array. The processors first sort chunks of 4096 keys in



Cache-Coherent Model (CC) Streaming Model (STR)
Core 1, 2, 4, 8, or 16 Tensilica LX cores, 3-way VLIW, 7-stage pipeline

800MHz, 1.6GHz, 3.2GHz, or 6.4GHz clock frequency
2 FPUs, 2 integer units, 1 load/store unit

I-cache 16KB, 2-way associative, 32-byte blocks, 1 port
Data 32KB, 2-way associative cache 24KB local store, 1 port
Storage 32-byte blocks, 1 port, MESI 8KB, 2-way associative cache, 32-byte blocks, 1 port

Hardware stream prefetcher DMA engine with 16 outstanding accesses
Local Network bidirectional bus, 32 bytes wide, 2 cycle latency (after arbitration)
Global Crossbar 1 input and output port per cluster or L2 bank, 16 bytes wide, 2.5ns latency (pipelined)
L2-cache 512KB, 16-way set associative, 1 port, 2.2ns access latency, non-inclusive
DRAM One memory channel at 1.6GB/s, 3.2GB/s, 6.4GB/s, or 12.8GB/s; 70ns random access latency

Table 2. Parameters for the CMP system. For parameters that vary, we denote the default value in bold. Latencies are for a 90nm CMOS
process.

Application Input Dataset L1 D-Miss
Rate

L2 D-Miss
Rate

Instr. per
L1 D-Miss

Cycles per
L2 D-Miss Off-chip B/W

MPEG-2 Encoder [28] 10 CIF frames (Foreman) 0.58% 85.3% 324.8 135.4 292.4 MB/s
H.264 Encoder 10 CIF frames (Foreman) 0.06% 30.8% 3705.5 4225.9 10.8 MB/s
KD-tree Raytracer 128x128, 16371 triangles 1.06% 98.9% 256.3 654.6 45.1 MB/s
JPEG Encoder [21] 128 PPMs of various sizes 0.40% 72.9% 577.1 84.2 402.2 MB/s
JPEG Decoder [21] 128 JPGs of various sizes 0.58% 76.2% 352.9 44.9 1059.2 MB/s
Stereo Depth Extraction 3 CIF image pairs 0.03% 46.1% 8662.5 3995.3 11.4 MB/s
2D FEM 5006 cell mesh, 7663 edges 0.60% 86.2% 368.8 55.5 587.9 MB/s
FIR filter 220 32-bit samples 0.63% 99.8% 214.6 20.4 1839.1 MB/s
179.art SPEC reference dataset 1.79% 7.4% 150.1 230.9 227.7 MB/s
Bitonic Sort 219 32-bit keys (2 MB) 2.22% 98.2% 140.9 26.1 1594.2 MB/s
Merge Sort 219 32-bit keys (2 MB) 3.98% 99.7% 71.1 33.7 1167.8 MB/s

Table 3. Memory characteristics of the applications measured on the cache-based model using 16 cores running at 800MHz.

parallel using quicksort. Then, sorted chunks are merged or sorted
until the full array is sorted. Merge Sort gradually reduces in par-
allelism as it progress, whereas Bitonic Sort retains full parallelism
for its duration. Merge Sort alternates writing output sublists to two
buffer arrays, while Bitonic Sort operates on the list in situ.

5. EVALUATION
Our evaluation starts with a comparison of the streaming system

to the baseline cache-based system without prefetching or other
enhancements (Sections 5.1 and 5.2). We then study the band-
width consumption and latency tolerance of the two systems (Sec-
tion 5.3). We conclude by evaluating means to enhance the perfor-
mance of caching systems (Sections 5.4 and 5.5).

5.1 Performance Comparison
Figure 2 presents the execution time for the coherent cache-based

(CC) and streaming (STR) models as we vary the number of 800
MHz cores from 2 to 16. We normalize to the execution time of
the sequential run with the cache-based system. The components
of execution time are: useful execution (including fetch and non-
memory pipeline stalls), synchronization (lock, barrier, wait for
DMA), and stalls for data (caches). Lower bars are better. The
cache-based results assume no hardware prefetching.

For 7 out of 11 applications (MPEG-2, H.264, Depth, Raytrac-
ing, FEM, JPEG Encode and Decode), the two models perform al-
most identically for all processor counts. These programs perform
a significant computation on each data element fetched and can be
classified as compute-bound. Both caches and local stores capture
their locality patterns equally well.

The remaining applications (179.art, FIR, Merge Sort, and Biton-
ic Sort) are data-bound and reveal some interesting differences be-
tween the two models. The cache-based versions stall regularly

due to cache misses. Streaming versions eliminate many of these
stalls using double-buffering (macroscopic prefetching). This is not
the case for Bitonic Sort, because off-chip bandwidth is saturated
at high processor counts. Bitonic Sort is an in-place sorting algo-
rithm, and it is often the case that sublists are moderately in-order
and elements don’t need to be swapped, and consequently don’t
need to be written back. The cache-based system naturally discov-
ers this behavior, while the streaming memory system writes the
unmodified data back to main memory anyway. H.264 and Merge
Sort have synchronization stalls with both models due to limited
parallelism.

There are subtle differences in the useful cycles of some applica-
tions. FIR executes 14% more instructions in the streaming model
than the caching model because of the management of DMA trans-
fers (128 elements per transfer). In the streaming Merge Sort, the
inner loop executes extra comparisons to check if an output buffer
is full and needs to be drained to main memory, whereas the cache-
based variant freely writes data sequentially. Even though double-
buffering eliminates all data stalls, the application runs longer be-
cause of its higher instruction count. The streaming H.264 takes
advantage of some boundary-condition optimizations that proved
difficult in the cache-based variant. This resulted in a slight reduc-
tion in instruction count when streaming. MPEG-2 suffers a mod-
erate number of instruction cache misses due the cache’s limited
size.

Overall, Figure 2 shows that neither model has a consistent per-
formance advantage. Even without prefetching, the cache-based
model performs similarly to the streaming one, and sometimes it
is actually faster (Bitonic Sort for 16 cores). Both models use data
efficiently, and the fundamental parallelism available in these ap-
plications is not affected by how data are moved. Although the
differences in performance are small, there is a larger variation in
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Figure 2. Execution times for the two memory models as the number of cores is increased, normalized to a single caching core.
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Figure 3. Off-chip traffic for the cache-based and streaming sys-
tems with 16 CPUs, normalized to a single caching core.

off-chip bandwidth utilization of the two models. Figure 3 shows
that each model has an advantage in some situations.

5.2 Energy Comparison
Figure 4 presents energy consumption for the two models run-

ning FEM, MPEG-2, FIR, and Bitonic Sort. We normalize to the
energy consumption of a single caching core for each application.
Each bar indicates the energy consumed by the cores, the caches
and local stores, the on-chip network, the second-level cache, and
the main memory. The numbers include both static and dynamic
power. Lower bars are better. In contrast to performance scal-
ing, energy consumption does not always improve with more cores,
since the amount of hardware used to run the application increases.

For 5 out of 11 applications (JPEG Encode, JPEG Decode, FIR,
179.art, and Merge Sort), streaming consistently consumes less en-
ergy than cache-coherence, typically 10% to 25%. The energy dif-
ferential in nearly every case comes from the DRAM system. This
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Figure 4. Energy consumption for the cache-based and streaming
systems with 16 CPUs, normalized to a single caching core.

can be observed in the correlation between Figures 3 and 4. Specifi-
cally, the streaming applications typically transfer fewer bytes from
main memory, often through the elimination of superfluous refills
for output-only data. The opposite is true for our streaming Bitonic
Sort, which tends to communicate more data with main memory
than the caching version due to the write-back of unmodified data.
For applications where there is little bandwidth difference between
the two models (such as FEM) or the computational intensity is
very high (such as Depth), the difference in energy consumption is
insignificant.

We expected to see a greater difference between the local store
and L1 data cache, but it never materialized. Since our applications
are data-parallel and rarely share data, the energy cost of an average
cache miss is dominated by the off-chip DRAM access rather than
the modest tag broadcast and lookup. Hence, the per-access energy
savings by eliminating tag lookups in the streaming system made
little impact on the total energy footprint of the system.
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Figure 5. Normalized execution time as the computation rate of processor cores is increased (16 cores).

5.3 Increased Computational Throughput
Up to now, the results assume 800 MHz cores, which are reason-

able for embedded CMPs for consumer applications. To explore the
efficiency of the two memory models as the computational through-
put of the processor is increased, we vary the clock frequency of
the cores while keeping constant the bandwidth and latency in the
on-chip networks, L2 cache, and off-chip memory. In some sense,
the higher clock frequencies tell us in general what would happen
with more powerful processors that use SIMD units, out-of-order
schemes, higher clock frequency, or a combination. For example,
the 6.4 GHz configuration can be representative of the performance
of an 800 MHz processor that uses 4- to 8-wide SIMD instructions.
The experiment was performed with 16 cores to stress scaling and
increase the system’s sensitivity to both memory latency and mem-
ory bandwidth.

Applications with significant data reuse, such as H.264 and
Depth, show no sensitivity to this experiment and perform equally
well on both systems. Figure 5 shows the results for some of the
applications that are affected by computational scaling. These ap-
plications fall into one of two categories: bandwidth-sensitive or
latency-sensitive. Latency-sensitive programs, like MPEG-2 En-
coding, perform a relative large degree of computation between
off-chip memory accesses (hundreds of instructions). While the
higher core frequency shortens these computations, it does not re-
duce the amount of time (in nanoseconds, not cycles) required to
fetch the data in between computations. The macroscopic prefetch-
ing in the streaming system can tolerate a significant percentage of
the memory latency. Hence at 6.4 GHz, the streaming MPEG-2
Encoder is 9% faster.

Bandwidth-sensitive applications, like FIR and Bitonic Sort,
eventually saturate the available off-chip bandwidth. Beyond that
point, further increases in computational throughput do not im-
prove overall performance. For FIR, the cache-based system sat-
urates before the streaming system due to the superfluous refills
on store misses to output-only data. At the highest computational
throughput, the streaming system performs 36% faster. For Bitonic
Sort, the streaming version saturates first, since it performs more
writes than the cache-based version (as described in 5.1). This gives
the cache-based version a 19% performance advantage.

5.4 Mitigating Latency and Bandwidth Issues
The previous section indicates that when a large number of cores

with high computational throughput are used, the cache-based mod-
el faces latency and bandwidth issues with certain applications. To
characterize these inefficiencies, we performed experiments with
increased off-chip bandwidth and hardware prefetching.

Figure 6 shows the impact of increasing the available off-chip
bandwidth for FIR. This can be achieved by using higher frequency
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Figure 6. The effect of increased off-chip bandwidth on FIR per-
formance. Measured on 16 cores at 3.2 GHz.

DRAM (e.g. DDR2, DDR3, GDDR) or multiple memory channels.
With more bandwidth available, the effect of superfluous refills is
significantly reduced, and the cache-based system performs nearly
as well as the streaming one. When hardware prefetching is in-
troduced at 12.8 GB/s, load stalls are reduced to 3% of the total
execution time. However, the additional off-chip bandwidth does
not close the energy gap for this application. An energy-efficient
solution for the cache-based system is to use a non-allocating write
policy, which we explore in Section 5.5.

For Merge Sort and 179.art (Figure 7), hardware prefetching sig-
nificantly improves the latency tolerance of the cache-based sys-
tems; data stalls are virtually eliminated. This is not to say that
we never observed data stalls—at 16 cores, the cache-based Merge
Sort saturates the memory channel due to superfluous refills—but
that a small degree of prefetching is sufficient to hide over 200 cy-
cles of memory latency.

5.5 Mitigating Superfluous Refills
For some applications, the cache-based system uses more off-

chip bandwidth (and consequently energy) because of superfluous
refills for output-only data. This disadvantage can be addressed by
using a non-write-allocate policy for output-only data streams. We
mimic non-allocating stores by using an instruction similar to the
MIPS32 “Prepare for Store” (PFS) instruction [34]. PFS allocates
and validates a cache line without refilling it. The results for FIR,
Mergesort, and MPEG-2 are shown in Figure 8. For each applica-
tion, the elimination of superfluous refills brings the memory traffic
and energy consumption of the cache-based model into parity with
the streaming model. For MPEG-2, the memory traffic due to write
misses was reduced 56% compared to the cache-based application
without PFS.
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Figure 7. The effect of hardware prefetching on performance. P4
refers to the prefetch depth of 4. Measured on 2 cores at 3.2 GHz
with a 12.8 GB/s memory channel.
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Figure 8. The effect of “Prepare for Store” (PFS) instructions on
the off-chip traffic for the cache-based system, normalized to a sin-
gle caching core. Also shown is energy consumption for FIR with
16 cores at 800 MHz. See Figure 4 for the second graph’s legend.

Note that a full hardware implementation of a non-write-allocate
cache policy, along with the necessary write-gathering buffer, might
perform better than PFS as it would also eliminate cache replace-
ments due to output-only data.

6. STREAMING AS A PROGRAMMING
MODEL

Our evaluation so far shows that the two memory models lead to
similar performance and scaling. It is important to remember that
we took advantage of streaming optimizations, such as blocking
and locality-aware scheduling, on both memory models. To illus-
trate this, it is educational to look at stream programming and its
implications for CMP architecture.

Stream programming models encourage programmers to think
about the locality, data movement, and storage capacity issues in
their applications [15, 13]. While they do not necessarily require
the programmer to manage these issues, the programmer structures
the application in such a way that it is easy to reason about them.
This exposed nature of a stream program is vitally important for
streaming architectures, as it enables software or compiler man-
agement of data locality and asynchronous communication with
architecturally visible on-chip memories. Despite its affinity for
stream architectures, we find that stream programming is benefi-
cial for cache-based architectures as well.

Figure 9 shows the importance of streaming optimizations in the
cache-based MPEG-2 Encoder. The original parallel code from [28]
performs an application kernel on a whole video frame before the
next kernel is invoked (i.e. Motion Estimation, DCT, Quantization,
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Figure 9. The effect of stream programming optimizations on the
off-chip bandwidth and performance of MPEG-2 at 800 MHz.
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Figure 10. The effect of stream programming optimizations on the
performance of 179.art at 800 MHz.

etc.). We restructured this code by hoisting the inner loops of sev-
eral tasks into a single outer loop that calls each task in turn. In
the optimized version, we execute all tasks on a block of a frame
before moving to the next block. This also allowed us to condense
a large temporary array into a small stack variable. The improved
producer-consumer locality reduced write-backs from L1 caches
by 60%. Data stalls are reduced by 41% at 6.4 GHz, even with-
out prefetching. Furthermore, improving the parallel efficiency of
the application became a simple matter of scheduling a single data-
parallel loop, which alone is responsible for a 40% performance
improvement at 16 cores. However, instruction cache misses are
notably increased in the streaming-optimized code.

For 179.art, we reorganized the main data structure in the cache-
based version in the same way as we did for the streaming code.
We were also able to replace several large temporary vectors with
scalar values by merging several loops. These optimizations re-
duced the sparseness of 179.art’s memory access pattern, improved
both temporal and spatial locality, and allowed us to use prefetch-
ing effectively. As shown in Figure 10, the impact on performance
is dramatic, even at small core counts (7x speedup).

Overall, we observed performance, bandwidth, and energy ben-
efits whenever stream programming optimizations were applied to
our cache-based applications. This is not a novel result, since it
is well-known that locality optimizations, such as blocking and
loop fusion [29], increase computational intensity and cache effi-
ciency. However, stream programming models encourage users to
write code that explicitly exposes an application’s parallelism and
data-access pattern, more often allowing such optimizations.

Our experience is that that stream programming is actually easier
with the cache-based model rather than the streaming model. With
streaming memory, the programmer or the compiler must orches-
trate all data movement and positioning exactly right in order for



the program to operate correctly and fast. This can be burdensome
for irregular access patterns (overlapping blocks, search structures,
unpredictable or data-dependent patterns, etc.), or for accesses that
do not affect an application’s performance. It can lead to addi-
tional instructions and memory references that reduce or eliminate
streaming hardware’s other advantages. With cache-based hard-
ware, stream programming is just an issue of performance opti-
mization. Even if the algorithm is not blocked exactly right, the
caches will provide best-effort locality and communication man-
agement. Hence, the programmer or the compiler can focus on the
most promising and most regular data structures instead of manag-
ing all data structures in a program.

Moreover, stream programming can address some of the coher-
ence and consistency challenges when scaling cache-based CMPs
to large numbers of cores. Since a streaming application typically
operates in a data-parallel fashion on a sequence of data, there is
little short-term communication or synchronization between pro-
cessors. Communication is only necessary when processors move
from one independent set of input/output blocks to the next or reach
a cycle in an application’s data-flow graph. This observation may
be increasingly important as CMPs grow, as it implies that less ag-
gressive, coarser-grain, or lower-frequency mechanisms can be em-
ployed to keep caches coherent.

7. DISCUSSION AND LIMITATIONS
It is important to recognize that our study has limitations. Our

experiments focus on CMPs with 1-16 cores and uniform memory
access. Some of the conclusions may not generalize to larger-scale
CMPs with non-uniform memory access (NUMA). A large-scale,
cache-based CMP, programmed in a locality-oblivious way, will
undoubtedly suffer stalls due to long memory delays or excessive
on-chip coherence traffic. We observe that the stream programming
model may be able to addresses both limitations; it exposes the flow
of data early enough that they can be prefetched, and motivates a
far coarser-grained, lower-frequency coherence model.

Towards the goal of designing large CMPs that are still easy
to program, a hybrid memory system that combines caching and
software-managed memory structures can mitigate efficiency chal-
lenges without exacerbating the difficulty of software develop-
ment. For example, bulk transfer primitives for cache-based sys-
tems could enable more efficient macroscopic prefetching. Con-
versely, small, potentially incoherent caches in streaming mem-
ory systems could vastly simplify the use of static data structures
with abundant temporal locality. An industry example of a hy-
brid system is the NVIDIA G80 GPU [6] which, in addition to
cached access to global memory, includes a small scratch-pad for
application-specific locality and communication optimizations.

Besides the limits of scalability, we did not consider architec-
tures that expose the streaming model all the way to the register
file [39] or applications without abundant data parallelism. We also
did not consider changes to the pipeline of our cores, since that
is precisely what makes it difficult to evaluate existing streaming
memory processors compared to cache-based processors. Finally,
our study was performed using general-purpose CMPs. A compari-
son between the two memory models for specialized CMPs remains
an open issue. Despite these limitations, we believe this study’s
conclusions are important in terms of understanding the actual be-
havior of CMP memory system and motivating future research and
development.

8. RELATED WORK
Several architectures [3, 39, 16, 32] use streaming hardware with

multimedia and scientific code in order to get performance and

energy benefits from software-managed memory hierarchies and
regular control flow. There are also corresponding proposals for
stream programming languages and compiler optimizations [15,
13]. Such tools can reduce the burden on the programmer for ex-
plicit locality and communication management. In parallel, there
are significant efforts to enhance cache-based systems with traffic
filters [35], replacement hints [43], or prefetching hints [44]. These
enhancements target the same access patterns that streaming mem-
ory systems benefit from.

To the best of our knowledge, this is the first direct compari-
son of the two memory models for CMP systems under a uni-
fied set of assumptions. Jayasena [23] compared a stream regis-
ter file to a single-level cache for a SIMD processor. He found
that the stream register file provides performance and bandwidth
advantages for applications with significant producer-consumer lo-
cality. Loghi and Poncino compared hardware cache coherence to
not caching shared data at all for embedded CMPs with on-chip
main memory [31]. The ALP report [28] evaluates multimedia
codes on CMPs with streaming support. However, for all but one
benchmark, streaming implied the use of enhanced SIMD instruc-
tions, not software managed memory hierarchies. Suh et al. [37]
compared a streaming SIMD processor, a streaming CMP chip, a
vector design, and a superscalar processor for DSP kernels. How-
ever, the four systems varied vastly at all levels, hence it is diffi-
cult to compare memory models directly. There are several pro-
posals for configurable or hybrid memory systems [33, 36, 23, 28].
In such systems, a level in the memory hierarchy can be config-
ured as a cache or as a local store depending on an application’s
needs. Gummaraju and Rosenblum have shown benefits from a hy-
brid architecture that uses stream programming on a cache-based
superscalar design for scientific code [17]. Our work supports this
approach as we show that cache-based memory systems can be as
efficient as streaming memory systems, but could benefit in terms
of bandwidth consumption and latency tolerance from stream pro-
gramming.

Our study follows the example of papers that compared shared
memory and message passing for multi-chip systems [24, 8].

9. CONCLUSIONS
The choice of the on-chip memory model has far-reaching im-

plications for CMP systems. In this paper, we performed a direct
comparison of two basic models: coherent caches and streaming
memory.

We conclude that for the majority of applications, both models
perform and scale equally well. For some applications without sig-
nificant data reuse, streaming has a performance and energy advan-
tage when we scale the number and computational capabilities of
the cores. However, the efficiency gap can be bridged by introduc-
ing prefetching and non-allocating write policies to cache-coherent
systems. We also found some applications for which streaming
scales worse than caching due to the redundancies introduced in
order to make the code regular enough for streaming.

Through the adoption of stream programming methodologies,
which encourage blocking, macroscopic prefetching, and locality
aware task scheduling, cache-based systems are equally as efficient
as streaming memory systems. This indicates that there is not a
sufficient advantage in building general-purpose cores that follow
a pure streaming model, where all local memory structures and all
data streams are explicitly managed. We also observed that stream
programming is actually easier when targeting cache-based sys-
tems rather than streaming memory systems, and that it may be
beneficial in scaling coherence and consistency for caches to larger
systems.
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