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ABSTRACT 
Meta has traditionally relied on using CPU-based servers for 
running inference workloads, specifically Deep Learning 
Recommendation Models (DLRM), but the increasing compute 
and memory requirements of these models have pushed the 
company towards using specialized solutions such as GPUs or 
other hardware accelerators. This paper describes the company's 
effort in constructing its first silicon specifically designed for 
recommendation systems; it describes the accelerator architecture 
and platform design, the software stack for enabling and 
optimizing PyTorch-based models and provides an initial 
performance evaluation. With our emerging software stack, we 
have made significant progress towards reaching the same or 
higher efficiency as the GPU: We averaged 0.9x perf/W across 
various DLRMs, and benchmarks show operators such as 
GEMMs reaching 2x perf/W. Finally, the paper describes the 
lessons we learned during this journey which can improve the 

performance and programmability of future generations of 
architecture. 
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1 Introduction 
Machine learning (ML) workloads have become ubiquitous in 

online activities. In recent years, these models have seen 
substantial growth in size and complexity, which has contributed 
towards their increased prediction accuracy and effectiveness. 
However, at the same time, this growth has presented significant 
challenges for the hardware platforms that are used for training 
and inference of these models at very large scales.  Total Cost of 
Ownership (TCO) is one of the major constraining factors in 
launching models to production in the datacenter, and power is a 
significant component of TCO for these platforms.  Therefore, 
performance-per-TCO (and performance-per-watt) has become an 
important metric for any hardware platform targeting these 
workloads.  

Deep Learning Recommendation Models (DLRM) [16] have 
emerged as one of the most dominant workloads in Meta’s 
datacenters [17][18]. These models combine traditional multilayer 
perceptron (MLP) operations (referred to as fully connected or FC 
at times) which are compute intensive, with embedding tables that 
transform sparse features into a dense representation. These tables 
contain wide vectors that are indexed randomly and are reduced to 
a single vector that is then combined with data coming from other 
layers to produce the final results [16]. While embedding table 
operations have rather light compute requirements, their memory 
footprint and bandwidth requirements are rather demanding due to 
the nature of the data access pattern and size of the tables. 

Figure 1   shows the historical and estimated   future growth in 
both complexity and memory footprint of the inference workloads 
related to recommendation models in Meta’s production 
datacenters. The dashed line shows the estimated growth in the 
model's compute requirement while the solid lines demonstrate 
the increase in the memory footprint. The gray solid line captures 
the footprint of the device memory used to store embedding 
tables, which is an important component of these models. The 
level of growth in both compute and memory requirements is 
certainly an issue that needs to be addressed, especially 
considering how these workloads are typically run in the 
datacenter. 

2 Motivation 
Traditionally CPUs have been used as the primary vehicle to 

serve inference workloads in Meta’s production datacenters, but 
they are not cost effective in keeping up with the demands of the 
most recent workloads. To that extent, hardware acceleration has 
been considered an attractive solution that can address power and 
performance issues and provide a more efficient way of serving 
inference requests while at the same time providing enough 
headroom in compute performance for running future models. 

 

Figure 1: Scaling trends for inference models 

Figure 2 shows the estimated number of servers that are 
deployed for serving inference workloads within the datacenter 
over the past couple of years. The light solid line shows the 
number of CPU-based servers, the dashed line shows the number 
of servers equipped with the first-generation inference accelerator, 
Intel NNPI [10], and the dark solid line shows the number of 
GPU-based servers [12]. While the initial demand for increased 
capacity was temporarily met using the NNPI accelerator, the 
requirements for the inference models quickly outpaced the NNPI 
capabilities and provided motivation for using GPUs. This 
brought the additional advantage of leveraging the existing 
ecosystem used already for training. Therefore, as can be 
observed, the increased demand in model complexity is served 
increasingly with GPUs as accelerators.  

While recent generations of GPUs provide a lot of memory 
bandwidth and compute power, they are not designed with 
inference in mind, and therefore the efficiency of processing real 
inference workloads is low.  Developers use a myriad of software 
techniques, such as operator fusion, shape specialization, graph 
transformations and kernel optimizations to raise the efficiency of 
GPUs. But despite these efforts, there is still an efficiency gap 
which makes it challenging and expensive to deploy models in 
practice. 

 

Figure 2: Growth in server demand for inference workloads 
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Given the experience deploying NNPI and GPUs as 
accelerators, it was clear that there is room for a more optimized 
solution for important inference workloads. This optimal solution 
is based on an in-house accelerator which is architected from the 
ground up to address the requirements of demanding inference 
workloads, specifically focused on meeting the performance 
requirements of DLRM systems. However, while focusing on 
DLRM workloads (given their ongoing variation and evolution 
and the fact that the architecture is effectively constructed for 
forthcoming generations of these workloads) it was also clear that 
in addition to performance, the architecture should also provide 
enough generality and programmability, to support future versions 
of these workloads and potentially other types of neural network 
models. 

While creating a custom silicon solution opens the door for 
ample innovation and specialization towards the target workloads, 
creating an accelerator architecture for mass deployment in the 
datacenter is a monumental task. The focus and strategy when 
architecting the accelerator therefore has been on adopting and 
reusing suitable pieces of technology, as well as tools and 
environments, from vendors and the open-source community. 
This not only improves the time to market, but it also leverages 
the support and enhancements that come from the community and 
vendors and reduces the amount of resources required for 
building, enabling, and deploying such platforms. 

The rest of this paper explains the undertaking of architecting 
MTIA, Meta’s first accelerator chip targeting inference 
workloads, and the learnings that came with it. The next section 
details the accelerator’s architecture and its various provisioned 
features and components. Section 4 goes over mapping an 
example operator to this architecture, demonstrating how various 
provisioned features are utilized to run the operator efficiently. 
Section 5 provides an overview of the accelerator’s software stack 
and section 6 describes our evaluation methodology and results. 
Finally, section 7 discusses a few important lessons learned during 
this development cycle. 

3 Accelerator Architecture 
Figure 3   shows the high-level architecture of the accelerator, 

which is organized as an array of processing elements (PEs) 
connected on a grid. The grid is connected to a set of on-chip 
memory blocks and off-chip memory controllers through 
crossbars on each side. There is a separate control subsystem with 
dedicated processors and peripherals to run the system's control 
software. The host interface unit which contains a PCIe interface, 
associated DMA engines, and secure boot processor also sits 
alongside this control subsystem. 

Figure 4   shows the internal organization of the PE. A PE 
consists of two RISC-V processor cores and associated 
peripherals (on the left), as well as several fixed function units 
specialized in performing specific computations or data 
movements (on the right). In addition, each PE has 128KB of 
local storage. A local interconnect establishes the connectivity 

between processors, their peripherals and custom hardware 
blocks. 

Figure 3: High-level architecture of the accelerator 

3.1 Fixed Function Units 
Each PE has a total of five fixed function blocks and a 

Command Processor which orchestrates and coordinates 
execution of operations on these fixed function blocks. Functional 
units form a coarse-grained pipeline within the PE, where data can 
be passed from one unit to the next to perform successive 
operations. Each functional unit can also access the data directly 
within the PE’s local memory, perform the necessary operations, 
and write the result back, without passing the data to other 
functional units. 

3.1.1 Memory Layout Unit (MLU) 
This block performs operations related to copying and 

changing the layout of data in the local memory. It can operate on 
tensors with 4/8/16/32-bit data types. Operations like transpose, 
concatenation, or reshape are performed using this block. The 
output data can be sent to the next block directly to be operated on 
immediately or can be stored in PE’s memory. For example, MLU 
can transpose a matrix and provide the output directly to DPE 
block for a matrix multiplication operation, or it can format the 
data properly as part of the depth-wise convolution operation and 
send it to DPE to perform the actual computation. 

3.1.2 Dot-Product Engine (DPE) 
This block performs a set of dot-product operations on two 

input tensors. The first tensor is read and stored within the DPE 
first, then the second tensor is streamed through the block and a 
dot product operation is performed with all the rows of the first 
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tensor. DPE can perform 1024 INT8 multiplications (32×32) or 
512 FP16/BF16 multiplications (32×16) per cycle. Operations are 
fully pipelined; performing multiplication of two maximum size 
matrices takes 32 clock cycles. In case of INT8 multiplication, the 
resulting output is stored in INT32 format, while in the case of 
BF16 or FP16 multiplications, the result is stored in FP32 format. 
The result is always sent to the next functional unit in the pipeline 
for storage and accumulation. 

Figure 4: PE’s internal organization 

3.1.3 Reduction Engine (RE) 
The reduction engine hosts the storage elements that keep 

track of the results of the matrix multiplication operations and 
accumulates them over multiple operations. There are four 
separate storage banks that can be independently used to store and 
accumulate the results coming from DPE. RE can load an initial 
bias into these accumulators and can also send their contents to 
neighbor PEs over a dedicated reduction network (discussed later 
in this section). Upon receiving results over the reduction 
network, RE accumulates the received values on top of the values 
in one of the local storage banks. It can then send the result to the 
next neighbor, to the SE, or store it in the PE’s local memory 
directly. 

3.1.4 SIMD Engine (SE) 
This block performs operations like quantization/de-

quantization and nonlinear functions. Internally the block contains 
a set of lookup tables and floating-point arithmetic units to 
calculate linear or cubic approximation of nonlinear functions 
such as exponentials, sigmoid, tanh, etc. The approximation 
accepts INT8 or FP16 data types as inputs, producing an INT8 or 
FP32 result at the output. The unit can receive its inputs directly 
from the RE block or read them from the local memory. In 
addition, this block is also capable of using its floating-point 
ALUs to perform a set of predefined elementwise operations, such 
as addition, multiplication, accumulation, etc. 

3.1.5 Fabric Interface (FI) 
This block acts as the gateway in and out of the PE. It connects 

to and communicates over the accelerator’s on-chip network. It 
formulates and sends memory access requests to on-chip and off-
chip memories, as well as system registers, and receives back the 
data or write completions. It implements a set of DMA-like 
operations that transfers the data in and out of PE’s local memory. 
It also receives and transmits cache misses and un-cached 
accesses from processor cores and allows other entities (other PEs 
or the control subsystem) to access the PE’s internal resources. 

3.1.6 Command Processor (CP) 
In addition to hosting PE’s local memory and registers, the CP 

block acts as the central processing unit that orchestrates 
execution of various operations on the fixed function blocks 
concurrently. It receives instructions from the two processor cores 
in the PE, performs dependency checking, scheduling, and 
tracking for those instructions, and dispatches them to the fixed 
function units for execution. It contains two separate schedulers 
(one for each processor core), a set of command queues, as well as 
arbitration logic for accessing the local memory and register 
resources. 

The hardware provides a set of basic atomic primitives to 
allow synchronization between the cores (within the PE or across 
multiple PEs). These primitives are enacted by processors, which 
allows atomic update to predefined registers, and can stall the 
processor until certain conditions are satisfied externally (e.g., a 
counter reaches a certain value). At the higher level, these 
mechanisms are used for efficient implementation of software 
constructs such as locks, ticketing locks, mutexes and barriers. 
The logic that performs the atomic operations as well as the 
relevant registers reside within the Command Processor and are 
tightly integrated with the processor cores through custom 
interfaces. 

3.2 Processor Cores 
Each PE contains two RISC-V cores that run the application’s 

code and issue commands to the CP for offloading various 
computations to fixed function units. The cores are single issue, 
in-order cores, with a five-stage pipeline (AX25-V100, from 
Andes Technology), and are heavily customized to suit the 
functionalities needed. The set of customizations includes custom 
interfaces, custom registers, custom instructions, and custom 
exceptions. Custom interfaces connect cores to the CP to issue 
commands to fixed function units and move data back and forth 
between cores and local memory. Custom registers store the 
command information that is sent to the CP upon issuing 
commands. Custom instructions are added to start the desired 
operation on each of the fixed function units. And finally custom 
exceptions ensure correctness of each command issued to the CP 
and raise an exception in case of illegal values in the command. 

One of the processor cores is equipped with the RISC-V vector 
extension, which adds extra flexibility to the PE and allows 
implementing operations that do not map well to the existing fixed 
function units. The vector processing unit contains 32 vector 
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registers, each 64B wide and has the same width for all vector 
functional units. It implements version 0.8.1 of the RISC-V vector 
extension [23]. 

3.3 Local Memory (LS) 
Each PE has total of 128KB of local memory to be used by 

processors and functional units. The CP implements an arbitration 
scheme for memory banks and coordinates accesses from cores 
and fixed function units. Local memories are mapped to the 
system’s address space and can be accessed by cores via regular 
load/store instructions. 

 There is an abstraction layer introduced on top of the local 
memories to simplify usage and dependency checking between 
operations that use them. This can be considered as further 
extension of the concept of the buffet [1][2]. Each PE can define 
circular buffers (CBs) that are mapped to the existing local 
memory. Each CB is designated with an ID and has a pair of 
registers that specify its size (depth) and starting address in the 
local memory. In addition, each CB also implements a set of read 
and write pointers to implement a hardware FIFO. 

In a CB, read operations always read the data starting from the 
read pointer and write operations always write data starting from 
the write pointer. Like buffets, read and write operations carry an 
offset which allows them to access a location other than the 
current head or tail of the buffer (Figure 5). Fixed function units 
use the CB IDs as their input/output operands; for example, a 
matrix multiplication operation uses two CBs as its input 
operands. Before allowing an operation to start, the Command 
Processor checks the availability of the data in the input CBs and 
space in the output CB. It allows the operation to start only if the 
necessary element and space checks pass. Therefore, an operation 
is guaranteed to have the necessary resources to complete and will 
not stall the functional unit in the middle of its execution. 

The Command Processor also uses the CB IDs to enforce 
dependency checks and interlocks between different custom 
instructions. It ensures that operations that access and modify a 
particular CB are always executed in program order, while 
operations that operate on different CBs or different regions of the 
same CB can execute in parallel. This significantly simplifies the 
dependency checks as opposed to using absolute local memory 
addresses for enforcing such interlocks. 

CBs also simplify realization of the producer-consumer 
execution model between different operations. These operations 
can be initiated by different cores or different fixed function units. 
For example, a program can issue a series of DMA operations to 
the hardware (which moves the data from an external memory 
into a CB), following it up with a set of custom compute 
operations (e.g., MATMUL) that uses that data, without requiring 
an explicit synchronization between the two. The MATMUL 
instruction is automatically stalled by the Command Processor 
until enough data is brought into the CBs by prior DMA 
operations, and is started immediately afterwards, relieving the 
program from explicitly checking the availability of the data. 

 

Figure 5: Reading from a Circular Buffer 

While some instructions like DMA operations automatically 
adjust the read and write pointers (as they move the data in and 
out of the CBs, and hence produce or consume elements), other 
custom instructions do not move the pointers. This allows data 
inside the CB to be reused multiple times by different operations 
before it is explicitly marked as consumed. Hardware provides 
additional custom instructions that can adjust both read and write 
pointers in each CB, allowing explicit marking of the data 
elements as produced or consumed, when necessary. 

3.4 Memory Subsystem and 
Interconnect 

In addition to the local memory within the PEs, the accelerator 
also has 128MB of on-chip SRAM, organized as slices around the 
grid. This on-chip memory can be used as addressable scratchpad 
memory, or as a common, shared, memory-side cache. There are 
four LPDDR5 controllers on each side of the grid, providing a 
total of 176 GB/s (theoretical) off-chip bandwidth. The 
accelerator can support a total of 128GB of off-chip memory 
capacity. Memory addresses are distributed across these 
controllers, and among the on-chip SRAM slices. When on-chip 
SRAM is configured as cache, each four cache slices are 
associated with a single memory controller and cache its 
addresses.  

The on-chip network that connects all the PEs and memories 
together is based on the AXI interconnect with special 
enhancements. The interconnects consist of two networks for 
carrying memory and register accesses separately. The memory 
access network is equipped with a multicast feature which allows 
coalescing of requests from multiple PEs into one (if they are 
made to the same set of addresses). A single request is then sent to 
the memory blocks to retrieve the data and return it to all 
requesting PEs. Multicast is only supported for the PEs that are 
located along the same row or column in the grid however, and 
cannot be used for an arbitrary group of PEs. 

In addition to the main AXI based interconnect, PEs are also 
connected to each other via a specialized network, called the 
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reduction network. This is a unidirectional network that travels 
only from north to south and from west to east. It carries partial 
sums from the accumulators in the RE block of one PE to another. 
Using this network, PEs can expediently accumulate the result of 
their computation without having to save and restore it in 
memory. The last PE in the row or column can then store the final 
result in the memory, after all partial values are accumulated. 

3.5 Parallelism and Data Reuse 
Parallelism, locality, and data reuse play a significant role in 

efficient utilization of limited hardware resources in any deep 
learning accelerator. MTIA architecture has provisioned a set of 
features to allow multiple degrees of parallelism and maximal 
exploitation of temporal and spatial data reuse in neural network 
models and operators, as discussed below. 

Parallelism: The architecture provides support for multiple 
levels of parallelism and overlapping of various operations. Data 
level parallelism (DLP) is exploited by usage of wide vectors in 
fixed function units as well as the vector processors. Multiple PEs 
also can operate on the same task in a data parallel manner. 
Instruction level parallelism is exploited in the Command 
Processor, by allowing multiple outstanding operations to be 
handled by different fixed function blocks simultaneously. 
Memory level parallelism (MLP) is achieved by allowing many 
outstanding requests to on-chip and off-chip memories from each 
PE. And finally, thread level parallelism (TLP) can be achieved 
by utilizing multiple PEs (or groups of PEs) to run parallel 
threads, as well as by having two independent threads within each 
PE. Threads within the PE can cooperate in performing a given 
task, by one thread orchestrating the data movement and the other 
one orchestrating the computation. 

Caching: There are multiple levels of caching in various 
blocks of the hardware to improve locality and reduce memory 
bandwidth consumption. This includes instruction and data caches 
in the processor cores, large on-chip last level cache, and caching 
for input operands in the DPE block. The caching at the DPE level 
allows the engine to hold data from both operand A and operand 
B and save access to local memory upon hit. 

Circular buffers / local memories: Circular buffers provide 
the storage for holding input operands while the PE performs the 
computations. Flexibility in adjusting pointers as well as 
offsetting into any location within a circular buffer allows the 
program to access each line of data multiple times, before 
deciding to mark it as consumed. 

Specialized reduction: Having a dedicated reduction network 
not only offloads a large part of data transfer from the system’s 
main on-chip network, but also provides a way for grouping PEs 
together and using their local memories in an aggregate form. 
This in turn allows storing a larger portion of input operands in 
the PEs and reducing the bandwidth requirement for loading them 
from off-chip memory. In addition, the DPE block utilizes 
reduction trees (spatial sum) to calculate the output of a 
multiplication operation [1][3][4], which is known to be more 
energy efficient [5]. 

Multicasting: As mentioned earlier, the system’s NoC allows 
coalescing requests from multiple PEs when they access the same 
set of addresses in memory. This reduces memory bandwidth and 
increases the energy efficiency of data movement by allowing the 
data to be shared while reading it from memory only once and 
delivering it to all requesters [1][6][7][8] 

Figure 6 shows the die plot with the grid of PEs, surrounded 
by on-chip SRAMs and off-chip DDR controllers, while Table I 
lists the summary of the chip features and parameters. 

Table I - Summary of MTIA features and parameters. 

Parameter Value 
Technology TSMC 7nm 
Frequency 800MHz nominal (1.1 GHz max) 
Instances 1.12B gates, 65M flops 
Dimensions 19.34 × 19.1mm (373 mm2) 
Package 43 × 43, ~2800 pins 
TDP 25 W 
Voltage Dual rail: 0.67V (logic), 0.75V (memories) 
Host Connectivity 8× PCIe Gen4 (16 GB/s) 

GEMM TOPS (MAC) 
102.4 (INT8) 
51.2 (FP16) 

SIMD TOPS 
Vector: 0.8 (FP32) / 1.6 (FP16) / 3.2 (INT8) 

SE: 1.6 (FP16) / 3.2 (INT8) 

Memory Bandwidth 
Local memory: 400GB/s per PE 

On-chip SRAM: 800GB/s 
Off-chip DRAM: 176 GB/s  

Memory Capacity 
Local memory: 128KB per PE 

On-chip SRAM: 128MB 
Off-chip LPDDR5: 64GB (16 channels) 

4 Mapping an FC Layer 
To demonstrate how all the above-mentioned features work 

together, let’s consider an FC operator that performs a matrix 
multiplication operation in the form of CT = A×BT and see how it 
maps to a sub-grid of PEs. The reason for performing the 
operations in a transposed manner is to keep k as the inner 
dimension for both tensors, to increase the efficiency of memory 
accesses. Matrix A is assumed to be m×k and matrix B is assumed 
to be k×n (hence BT will be n×k), producing output C which will 
be an m×n matrix (or CT being an n×m matrix). Inputs are 
assumed to have row major memory layout. When the inner 
dimension (k) is not a multiple of 32B, the outer dimension (m or 
n) stride is aligned to 32B boundaries for efficient data movement. 
For simplicity, we will assume that all elements are of INT8 data 
type. 
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Figure 6: MTIA die plot 

As mentioned earlier, DPE works on blocks of 
32(m)×32(k)×32(n) inputs, generating 32(n)×32(m) partial results 
accumulated in the RE. This operation takes 32 clock cycles. In 
order to feed the DPE’s pipeline, 32(m)×32(k) blocks of matrix A 
and 32(n)×32(k) blocks of matrix BT must be brought from 
external memory into PE’s local memory in 32 cycles, requiring 
64B/cycle of bandwidth. To alleviate this bandwidth pressure, the 
four accumulators in the RE block are used to accumulate 2×2 
blocks of partial results, holding a total of 64(n)×64 (m) elements 
of the output matrix. By using the accumulators in this manner, 
we use every 32×32 input block twice, hence reducing the 
external bandwidth requirement to 32B/cycle. 

Tensor dimensions m, n and k are distributed in multiples of 
64, 64 and 32 across the PE grid respectively. Each PE hence 
works on a different sub-block of the larger result matrix in a data 
parallel fashion. The reduction dimension (k) is distributed over 
multiple PEs along the row (or column). This facilitates the usage 
of the reduction network to accumulate partial results after 
multiplication is completed. PEs pass the calculated partial results 
to each other to accumulate and pass to the next PE. When two or 
more PEs along a given row or column use the same block of 
input data from either input matrix, the multicast feature of the on-
chip network is used to coalesce the requests from multiple PEs 
and send a single request to the memory, further reducing memory 
bandwidth requirements. 

Figure 7 shows an example of distributing an FC operator with 
dimensions of 512(m), 1024(k) and 256(n) on a 4×4 PE sub-grid. 
The reduction dimension (k) is distributed across two PEs along 
the same row and dimension m is distributed across four rows. 
PEs in columns 0 and 2, and PEs in columns 1 and 3 participate in 

row multicast-read of matrix A. Similarly, all PEs in each column 
participate in column multicast-read of matrix BT. 

 

Figure 7: Mapping an FC operator to a sub-grid 

Within the PE, the operation is divided between the two cores 
in a producer-consumer manner. Figure 8 shows the pseudocode 
corresponding to each of the cores in the PE. Core0 issues a set of 
DMA operations that move data from main memory into CB_A 
and CB_B, used to store matrices A and B locally. In a parallel 
thread, Core1 issues a set of matrix multiply (MML) instructions 
that reads data from CB_A and CB_B respectively and stores the 
results in an accumulator register. As can be observed, each block 
of data is used twice to produce a partial result in each of the 
accumulator registers. If the operation is the last iteration, the data 
is marked as consumed in the CB by issuing a POP instruction, 
otherwise the corresponding CB offsets are incremented to move 
to the next block of data in the next iteration. At the end, the 
reduction operation (REDUCE) is called to accumulate all partial 
sums across PEs. The last PE in the reduction chain sends the data 
back to main memory using the DMA operation.  

The two cores in the PE must synchronize at the start of the 
operation as only one of them performs the necessary 
initialization tasks (e.g., setting up the CBs to use). But 
afterwards, there is no explicit, per iteration synchronization; the 
producer-consumer synchronization is taken care of by the 
hardware: If the consumer (the MML operation) attempts to use a 
CB that does not have enough data, hardware stalls the operation 
until the producer (DMA operation) places enough data within the 
CB, at which point it allows the matrix multiplication to proceed. 
This asynchronicity decouples the producer and consumer threads 
and allows the producer to move ahead and bring in more data for 
later iterations. 
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Figure 8: Pseudocode for the FC operator running in PE 

5 Software Stack 
The software stack for MTIA is designed with two main goals 

in mind: be efficient for production, meaning achieve higher 
perf/TCO than other best-in-class solutions, and at the same time, 
be simple and straightforward to use, even simpler than available 
alternatives.  The software stack for MTIA is designed and built 
around PyTorch to benefit from its capabilities and to achieve a 
seamless integration with other components of the ML 
infrastructure available in a production environment. The rest of 
this section provides an overview of each component of the 
software stack as shown in Figure 9. 

ML serving platform: At the top of the software stack, we 
have production-specific ML model serving platforms 
(Application Layer as illustrated in Figure 9). These serving 
platforms are operating on top of PyTorch and are mostly 
hardware agnostic, supporting execution on heterogeneous 
hardware systems including CPUs, GPUs, and accelerators like 
MTIA. 

PyTorch Runtime: A PyTorch Runtime integration for MTIA 
was developed which provides necessary functionality and 
features including MTIA Tensors, a host-side memory allocator, 
and CUDA-like streaming APIs for scheduling the desired 
operators to execute on the device. The runtime supports different 
modes of model execution, including eager mode, as well as full 
graph compilation and execution to maximize performance. It also 
supports running models split into partitions spanning multiple 
cards, providing the necessary synchronization and 
communication channels between them. 

 

Figure 9: MTIA’s software stack 

Compilers: The next important component in the software 
stack is a set of compilers which consists of multiple parts: 

• A PyTorch FX-based ML model compiler which applies 
several transformations and model-level optimizations to the 
PyTorch graph represented as FX IR [19][20], and gradually 
converts it into LLVM IR [21][22]. It is responsible for graph 
optimizations which take advantage of the PE grid and MTIA’s 
memory subsystem. It implements a tensor placement scheme that 
takes a best-effort approach to keep producer-consumer data in 
on-chip memory. It can also split a model into sub-graphs 
intended to run across multiple cards and even across sub-grids 
within the same chip. 

• A DSL-based compiler (codename KNYFE) for ML kernel 
development, which takes a short high-level description of an ML 
kernel and produces low-level optimized C++ code. It uses low-
level hardware specific APIs to implement the ML operator and is 
used extensively for developing many of the ML kernels used in 
MTIA. 

• LLVM-based compiler toolchain which converts LLVM IR 
into an executable for the device. LLVM is used primarily due to 
the RISC-V support it provides and is responsible for the lowest 
level of optimizations like register allocation, in-lining and code 
generation. Most major optimizations like tiling or scheduling of 
the work and data among PEs are performed by the higher-level 
compilers mentioned earlier. 

Library of ML kernels: Another important component is the 
library of kernels and ML operators that are used to construct the 
ML models executing on the device. Many of these kernels are 
developed using the DSL compiler mentioned earlier, but some of 
the most performance demanding kernels, e.g., fully connected 
(FC) layers and embedding bag (EB) layers, are developed by 
experts directly in low-level C++ using exposed intrinsics to 
ensure they can achieve the highest levels of performance possible 
on the hardware. 

Host driver and firmware interface: MTIA platform 
software enables the host to access the accelerator device. It 
manages the device lifecycle and resources, and it helps initiate 
and track runtime operations on the device. This part of the stack 

#--------------------------------Core0-------------------------------------
work = GetWorkForMyPE(...)
INIT CB_A, CB_B and CB_C                       # Setup circular buffers
multicast_A, multicast_B = JoinMulticastGroup(...)
Sync(...)                                      # Synchronize with others
read_B = true
for m in range(work.m.begin, work.m.end, 64):  # For every row of “A”...
 read_A = true
 for n in range(work.n.begin, work.n.end, 64): # ...read entire “B”
  for k in range(work.k.begin, work.k.end, 32):
   if read_A:
    DMA GetAddr(A, (m, k)), size=(64,32), CB_A, multicast_A
   if read_B:
    DMA GetAddr(B, (n, k)), size=(64,32), CB_B, multicast_B
  read_A = false
 read_B = false
#--------------------------------Core1-------------------------------------
work = GetWorkForMyPE(...)
Sync(...)                                     # Synchronize with others
for m in range(work.m.begin, work.m.end, 64): # For every two chunks of “A”
 cb_offset_B = 0                              
 for n in range(work.n.begin, work.n.end, 64):# Multiply two chunks of “B”
  cb_offset_A = 0
  INIT RE acc with 0                          # Initialize accumulators
  for k in range(work.k.begin, work.k.end, 32): 
   MML acc=0,size=(32,32,32),CB_B,CB_A,cb_offset_B      ,cb_offset_A
   MML acc=1,size=(32,32,32),CB_B,CB_A,cb_offset_B      ,cb_offset_A+32*32
   MML acc=2,size=(32,32,32),CB_B,CB_A,cb_offset_B+32*32,cb_offset_A
   MML acc=3,size=(32,32,32),CB_B,CB_A,cb_offset_B+32*32,cb_offset_A+32*32
   if ((m + 64) >= work.m.end):              # If last Iteration...
    POP CB_B, size=2*32*32                   # ...mark “B” data as consumed
   else:                                     # Otherwise...
    cb_offset_B += 2*32*32                   # ...proceed to the next chunk
   if ((n + 64) >= work.n.end):              # If last Iteration...
    POP CB_A, size=2*32*32                   # ...mark “A” data as consumed
   else:                                     # Otherwise...
    cb_offset_A += 2*32*32                   # ...proceed to the next chunk 
  REDUCE destination = neighbor PE or CB_C, size=(64,64))# Send to next PE
  if IsLastPEInReduction(...):               # If last PE in sequence
   DMA PutAddr(C, (n, m)), size=(64, 64), CB_C # Write result to memory
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is broadly split into two parts: the host software and device 
firmware. The host software consists of the Linux device driver, a 
device access library for providing a uniform device interface, and 
a streaming API to interface with PyTorch, as well as software 
tools and utilities for managing and monitoring the device. 

Device firmware: The device firmware includes a ROM 
based pre-boot firmware, secure boot firmware running on its own 
processor, the Control Core Processor firmware running on the 
control subsystem performing runtime and management 
operations, and finally the PE monitor that runs on the PEs in the 
compute grid, which schedules and monitors workloads running 
on the PEs. The main control firmware is based on the Zephyr 
Real Time OS [9]. 

6 Results 
We evaluate the performance of the MTIA by comparing it 

against a baseline accelerator (NNPI) [10] and against more 
recently deployed GPUs. It should be noted that we report the 
results collected with an under-development software stack, as we 
believe this reflects the end-to-end performance and is 
representative of a production environment. However, this stack is 
not currently as optimized as the GPU’s software stack. 
Consequently, there are cases where the GPU is more efficient, 
but we are hoping to close this gap over time and have the MTIA 
software stack deliver the full gains of the architecture across all 
the DLRM workload space. We evaluate both operator-based 
benchmarks as well as full DLRM models varying in complexity, 
size, and accuracy. Since these accelerators are all based on 
different hardware platforms, we first compare their system level 
hardware specification (Table II). These platforms are the 
following: Yosemite V2 server with six NNPI accelerator cards 
[11], Zion4S server with eight Nvidia A100 GPUs [12], and 
Yosemite V3 server [13] with twelve MTIA accelerator cards. 

Table II - Inference hardware platforms 

Metric Yosemite 
V2 (6 NNPI) 

Zion4S 
(8 GPU) 

Yosemite V3 
(12 MTIA) 

Power 

System 298 W 4500 W 780 W 
Card 13.5 W 330 W 35 W 
Percentage 27.2 % 58.7 % 53.8 % 

Compute 
INT8 (TOPS/s) 50 × 6 624 × 8 104 × 12 
FP16 (TF/s) 6.25 × 6 312 × 8 52 × 12 

Memory 

Type (device) LPDDR HBM LPDDR 
Size (device) 16 GB × 6 40 GB × 8 32 GB × 12 
BW (device) 50 GB/s × 6 1.5 TB/s × 8 150 GB/s × 12 
Size (host) 64 GB 1.5 TB 96 GB 
BW (host) 50 GB/s 400 GB/s 76 GB/s 

Comms. 

Dev.-to-Dev. PCIe NVLink PCIe 
P2P BW (card) 3.2 GB/s 80 GB/s 12.8 GB/s 
NIC BW 50 Gbps 400 Gbps 100 Gbps 

While we can compare the absolute performance of MTIA 
versus NNPI and GPUs, each device has different capabilities in 
terms of compute throughput, memory bandwidth, and memory 
capacity. They also operate under different power budgets. 
Therefore, in our study we report perf/W (as a proxy for 
perf/TCO, given the sensitive nature of TCO), because power is 
an important factor in provisioning for deployment in the 
datacenter. We use the total platform power divided by the 
number of accelerator cards to determine power provisioned for 
each accelerator, as opposed to using the maximum TDP for the 
card. 

6.1 Benchmark Performance 
We first evaluate the performance of several important 

operators and kernels that push the limits of the architecture and 
are representative of main components in production DLRMs. 
Table III shows the latency breakdown of a request in a 
representative DLRM with batch sizes of 64 and 256. The model 
has approximately 750 layers with nearly 550 consisting of EB 
operators. For batch size of 64, FC dominates the execution time 
followed by EB, while for batch size 256, EB dominates FC 
slightly and the two together account for 62% of the execution 
time.  It should be noted that with larger input shapes, the kernels 
are able to better amortize the setup costs, and reuse the data 
more, hence achieving higher utilization of the fixed-function 
units in the hardware. 

Table III - Operator breakdown, medium complexity DLRM 

Operator Batch size 64 Batch size 256 
FC (Fully Connected) 42.10 % 32.4% 
EB (Embedding Bag) 31.19 % 30.0% 
Concat 2.86 % 11.5% 
Transpose 8.47 % 5.9% 
Quantize 1.55 % 5.3% 
Dequantize 2.94 % 3.3% 
BatchMatMul 3.30 % 1.7% 
Others 7. 59 % 11.0% 

 
Based on the breakdown, we use a set of benchmarks to assess 

the efficiency of the MTIA’s hardware. While not full-fledged 
workloads, these benchmarks allow exercising various shapes and 
sizes for important operators (including corner cases) and shed 
light on the potential deficiencies that might exist in the hardware. 
GemmBench [14] is used to evaluate dense computation; it 
creates a model composed of a chain of FC layers. In our 
benchmark runs we focus on both FP16 and INT8 (quantized) 
data, which requires additional quantize and dequantize layers. 
TBEBench [15] is used to evaluate sparse computation, and 
allows us to configure the batch size, number of tables, number of 
rows per table, embedding dimension, and pooling factor of TBE 
operators. BatchGEMMBench [24], ConcatBench [26], and 



 

TransposeBench [26] are used to efficiently cover other 
significant operators typically seen in recommendation models. 
We also evaluate several elementwise kernels including quantize, 
dequantize, and tanh. 

Dense computation: We evaluate both INT8 and FP16 Fully 
Connected (FC) layers (Figure 10 and Figure 11). When accuracy 
is sufficient, INT8 quantization unlocks a potential 2x 
improvement in FC throughput. For the set of shapes we evaluate, 
the trend lines roughly track for MTIA and the GPU across INT8 
and FP16, indicating that the software implementations are well 
optimized across a range of arithmetic intensities. In many cases, 
MTIA achieves 2x or greater performance per Watt, and is 
particularly effective for low batch sizes which helps when 
serving requests under stringent latency requirements.  For large 
batch sizes, the GPU is able to achieve higher utilization with the 
increased amount of work so the perf/W gains of MTIA are lower.  
Note that MTIA is most efficient when tensors can be streamed 
directly from SRAM, which means that graph optimizations and 
managing data locality are very important for good performance 
at the model level. 

 

 

Figure 10: INT8 FC performance 

 

Figure 11: FP16 FC performance 

Sparse computation: While a typical recommendation model 
might include hundreds of EmbeddingBag (EB) operators, they 
can be merged together into one or more TableBatchedEmbedding 
(TBE) operators to amortize kernel launch overhead and increase 
the work that can be parallelized across the device.  Figure 12 
shows the performance (in GB/s/W) for the TBE benchmark 
running on MTIA and GPU for a set of representative operator 
shapes. Note that we report performance in terms of GB/s here 
because this benchmark is mostly memory bound, and measuring 
bandwidth as opposed to lookups/sec provides better insight into 
hardware utilization. Here we utilize the cache configuration of 
the on-chip SRAM to take advantage of locality across and within 
batches.  In these examples, all table entries use 8-bit quantization 
and the triplets shown in the graph describe the operator’s pooling 
factor, number of rows in the table, and the embedding dimension 
(elements per row). MTIA achieves between 0.6x to 1.5x the 
perf/W of the GPU with the current kernel implementation. 

Given the evolving nature of the software stack, we   observe 
that there is significant headroom for improvement: MTIA is 
reaching just 10-20% of its memory bandwidth whereas the GPU 
is achieving about 60% of its HBM bandwidth. To ensure that 
there are no deficiencies in hardware, we used hand-written 
kernels developed for RTL validation, and could observe 
performance levels as high as 500 GB/s (more than 60% of 
roofline) or 6 GB/s/W given sufficient locality in the SRAM. We 
hope to close this gap by improving the software pipelining and 
instruction scheduling of the TBE kernels. 

 

 

Figure 12: TBE performance 

Other operators: While FC and TBE tend to dominate 
execution time, we found that other operators can be just as 
important, especially given how much effort is spent optimizing 
the former. We evaluated BatchMatMul, Concat, Transpose, and 
several elementwise kernels for M=256, K=128, N=32, with 
tensor data placed in SRAM and DRAM (Figure 13). These 
operators tend to be memory bound which is exemplified by 
BatchMatMul and Tanh, which reach more than 90% and 80% of 
the SRAM bandwidth, respectively. When data is placed in the 
DRAM, the efficiency drops down to around 40% on average, 
because it is more difficult to hide the additional memory latency. 
We believe implementation of data placement optimizations, 
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operator fusion, and minimizing data fetch from DRAM could 
potentially mitigate this issue. 

 

 

Figure 13: Performance of other operators 

6.2 Model Performance 
We examine the performance of five different representative 

DRLMs, described in Table IV, which range from low to high 
complexity. MTIA can run the same recommendation models that 
run on NNPI and GPU. With the current level of maturity of the 
software stack, MTIA achieves near perf/W parity with the GPU 
and exceeds the perf/W of NNPI, while roofline modeling 
indicates there is significant room for improvement as the 
software stack matures further. 

Table IV - DLRM models used for evaluation. 

DLRM Model Size (GB) Complexity 
(GFLOPS/batch) 

Low Complexity 1 (LC1) 53.2 0.032 
Low Complexity 2 (LC2) 4.5 0.014 
Medium Complexity 1 (MC1) 120 0.140 
Medium Complexity 2 (MC2) 200 0.220 
High Complexity (HC) 725 0.450 

 
Figure 14 shows the performance (in TFLOPS/s/W) across the 

above-mentioned set of DLRMs. Compared to NNPI, MTIA 
achieves 1.6x higher efficiency while compared to GPU, it 
reaches 0.9x efficiency. There are two important factors to 
consider in these results: the model characteristics and the level of 
software optimization in the implementations. For low complexity 
models, MTIA has a significant advantage over the GPU because 
these models are dominated by FC layers with smaller input 
shapes and MTIA handles this quite efficiently, e.g. LC2 shows 
nearly a 3x improvement. For medium complexity models, MTIA 
still sees an efficiency gain over the GPU, but it is lower because 
FCs are less dominant, and the GPU software stack provides more 
efficient implementations of other operators (with TBE and 
aggressive operator fusion).  For high complexity models, we see 
that the GPU software stack is better optimized for large shapes, 

and MTIA needs similar optimizations in order to achieve the 
same or higher levels of efficiency.   These initial results give us 
insight into areas of the software stack that we should consider 
focusing on in the future (e.g., large FCs, TBE optimizations, 
operator fusion, etc.), as well as provide important learnings for 
next-generation architecture which we discuss next. 

 

 

Figure 14: Performance of DLRMs 

7 Discussion 
Building silicon is always a difficult, lengthy, and time-

consuming process, especially when done for the first time. For 
MTIA, the resulting silicon needed to achieve high performance, 
handle a wide range of recommendation models, and provide a 
level of programmability that would allow rapid deployment of 
models in production. This section highlights our important 
observations and reflections regarding architectural choices, and 
how they impacted the software stack, performance, and 
developer efficiency.  These lessons also act as guidance for 
improving and enhancing future generations of architecture. 

Dual-Core PEs: The choice of having two separate processor 
cores within the PE and allowing both to control the fixed 
function units provided a great degree of parallelism and 
flexibility at the thread level, allowing decoupling of compute 
from data transfer. While this decoupling simplified the 
programming and alleviated performance issues when a particular 
operator is instruction bound (by providing twice the overall 
instruction throughput), using both cores correctly and efficiently 
in software took some effort. Details such as synchronization 
between the two cores for initialization and clean up before 
execution of a job were difficult to get right the first time, but 
afterwards were leveraged in all workloads through proper 
integration in the software stack. 

General-Purpose Compute: Addition of general-purpose 
compute in the form of RISC-V vector support proved to be a 
judicious choice: There were operators which were developed or 
gained importance after the architecture definition phase, and 
hence the architecture did not include any offload support for 
them. Operators like LayerNorm and BatchedReduceAdd were 



 

straightforward to implement with vectors, and these 
implementations proved superior to versions using scalar cores 
and fixed function units. 

Automated Code Generation: Some of the architectural 
choices made regarding how the fixed function units are 
integrated and operated in the PE have made the automatic code 
generation by compiler difficult. Processor cores must assemble 
and issue explicit commands to operate any of the fixed-function 
blocks. While this is done through addition of custom instructions 
and registers to the processors, it still requires assembling and 
passing many parameters to each offload engine to specify the 
details of the operation. Controlling a heterogenous set of fixed-
function units from within the program and balancing the data 
flow between them is a challenging problem for the compiler. 
Achieving desired levels of utilization on the fixed-function 
blocks across various input shapes and sizes is also difficult. 
While our DSL-based KNYFE compiler makes it easier to write 
kernels and handles many of these issues automatically, it requires 
learning a new DSL. 

Circular Buffers: Addition of the circular buffer abstraction 
greatly simplified the dependency checking between custom 
operations that work on the same region of memory, as the 
circular buffer IDs were used as units of dependency checks 
(similar to register IDs in the processor cores). They also 
simplified the implementation of the producer-consumer 
relationship between fixed function blocks and processors, as the 
hardware holds off the operation until enough data (or space) is 
available in the circular buffer without any need for explicit 
synchronization at the software level. The flexible addressing 
mechanism also allows arbitrary access to any location within a 
circular buffer, which simplifies data reuse as different operations 
can access different segments within the circular buffer multiple 
times. However, this requires software to explicitly manage the 
space within the buffer and decide when the data should be 
marked as consumed, which might create difficult to debug 
correctness issues if not performed properly.  

Memory Latency: Both PE and on-chip SRAM memories 
turned out to have longer than typical access latencies. Having 
lots of clients accessing the PE memory complicated the 
arbitration scheme and added latency cycles. For fixed function 
blocks, this latency gets rolled into the operation’s latency, but 
when processors try to use the local memory, software must resort 
to techniques such as unrolling and software pipelining to hide 
latencies, which increases the register pressure. This becomes 
exacerbated when developing kernels on the vector processor, as 
it limits the amount of register grouping that can be performed 
and hence increases the dynamic instruction count. 

Placement of the on-chip SRAMs over the perimeter, while 
evenly distributing requests over multiple slices, created a large 
degree of non-uniformity in memory access latencies. Since the 
requests are always completed after the last piece of data arrives, 
the overall latency gets impacted when making larger than 
minimum requests. While in most cases this latency could be 
hidden by prefetching data into the PE’s memory, in cases such as 
EmbeddingBag operators with small pooling groups the latency 
gets exposed because the memory access pattern is not known in 

advance and there are not enough outstanding requests to hide the 
latency. 

Cache Coherence: While the system implements a shared 
memory paradigm, there is no hardware support for cache 
coherency. In this shared memory system, inter-PE coherency is 
not required as different PEs operate on their dedicated part of the 
dataset in a data parallel manner. However, intra-PE coherency 
sometimes causes correctness issues: If the same set of memory 
addresses are touched by the two processor cores, or by the fixed-
function units and a core, or addresses are reused by the same core 
across different operators, the cached copies of these addresses 
must be explicitly flushed from caches, otherwise the stale data 
could be used.  

Architecture Hierarchy: Recommendation models for the 
accelerator vary greatly in size and complexity in the layers and 
operators they employ. While large layers when mapped on the 
PE grid can extract desired utilization level from available 
hardware resources and amortize the overhead of job creation and 
dispatch, the smaller layers or lower batch sizes have to resort to 
techniques such as exploiting sub-graph parallelism and fusion to 
get to the same level of utilization. Even though there is plenty of 
room at the software level to perform such optimizations or 
reduce the overheads of deploying jobs, we believe some 
provisioning at the architecture level would have made addressing 
this problem easier. This is because for smaller jobs the grid must 
be divided into smaller sub-grids so that each can handle a smaller 
job, and the task of setting up and tearing down these sub-grids is 
part of the system’s firmware. We believe having another level of 
hierarchy in the architecture itself, for example clusters of PEs, 
might have made this problem easier to solve as it provides 
natural units of isolation and management, compared to a 
monolithic grid of PEs. 

In the first generation of MTIA, we built an architecture that 
can gain significant levels of efficiency for DLRM workloads 
compared to GPUs and other accelerators. We hope to continue to 
increase this efficiency over time as the software stack matures. 
The experience of writing kernels, building a compiler, and 
optimizing models for this architecture has given us great insights 
into what features are more impactful. We are hoping to integrate 
and leverage all the lessons learned on both hardware and 
software sides of the project in future generations of architecture. 
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