
MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems

Amin Firoozshahian
Joel Coburn

Roman Levenstein
Rakesh Nattoji

Ashwin Kamath
Olivia Wu

Gurdeepak Grewal
Harish Aepala
Bhasker Jakka

Bob Dreyer
Adam Hutchin

Utku Diril†
Krishnakumar Nair
Ehsan K. Ardestani

Martin Schatz
Yuchen Hao

Rakesh Komuravelli
Kunming Ho

Sameer Abu Asal

Joe Shajrawi
Kevin Quinn

Nagesh Sreedhara
Pankaj Kansal

Willie Wei
Dheepak Jayaraman

Linda Cheng
Pritam Chopda

Eric Wang
Ajay Bikumandla

Arun Karthik Sengottuvel
Krishna Thottempudi
Ashwin Narasimha

Brian Dodds
Cao Gao

Jiyuan Zhang
Mohammad Al-Sanabani

Ana Zehtabioskui

Meta Platforms Inc.
 Menlo Park, CA, USA

Jordan Fix
Hangchen Yu

Richard Li
Kaustubh Gondkar
Jack Montgomery

Mike Tsai
Saritha Dwarakapuram

Sanjay Desai
Nili Avidan

Poorvaja Ramani
Karthik Narayanan

Ajit Mathews
Sethu Gopal

Maxim Naumov
Vijay Rao

Krishna Noru
Harikrishna Reddy

Prahlad Venkatapuram
Alexis Bjorlin

ABSTRACT
Meta has traditionally relied on using CPU-based servers for
running inference workloads, specifically Deep Learning
Recommendation Models (DLRM), but the increasing compute
and memory requirements of these models have pushed the
company towards using specialized solutions such as GPUs or
other hardware accelerators. This paper describes the company's
effort in constructing its first silicon specifically designed for
recommendation systems; it describes the accelerator architecture
and platform design, the software stack for enabling and
optimizing PyTorch-based models and provides an initial
performance evaluation. With our emerging software stack, we
have made significant progress towards reaching the same or
higher efficiency as the GPU: We averaged 0.9x perf/W across
various DLRMs, and benchmarks show operators such as
GEMMs reaching 2x perf/W. Finally, the paper describes the
lessons we learned during this journey which can improve the

performance and programmability of future generations of
architecture.

CCS CONCEPTS
•Computer systems organization~Architectures~Other
architectures~Neural networks

KEYWORDS
Accelerators, Machine Learning, Inference, Recommendation
Systems, Performance, Programmability
ACM Reference format:
Amin Firoozshahian, Joel Coburn, Roman Levenstein, Rakesh
Nattoji, Ashwin Kamath, Olivia Wu, Gurdeepak Grewal, Harish
Aepala, Bhasker Jakka, Bob Dreyer, Adam Hutchin, Utku Diril,
Krishnakumar Nair, Ehsan K. Ardestani, Martin Schatz, Yuchen
Hao, Rakesh Komuravelli, Kunming Ho, Sameer Abu Asal, Joe
Shajrawi, Kevin Quinn, Nagesh Sreedhara, Pankaj Kansal, Willie
Wei, Dheepak Jayaraman, Linda Cheng, Pritam Chopda, Eric
Wang, Ajay Bikumandla, Arun Karthik Sengottuvel, Krishna
Thottempudi, Ashwin Narasimha, Brian Dodds, Cao Gao, Jiyuan
Zhang, Mohammad Al-Sanabani, Ana Zehtabioskui, Jordan Fix,
Hangchen Yu, Richard Li, Kaustubh Gondkar, Jack Montgomery,
Mike Tsai, Saritha Dwarakapuram, Sanjay Desai, Nili Avidan,
Poorvaja Ramani, Karthik Narayanan, Ajit Mathews, Sethu
Gopal, Maxim Naumov, Vijay Rao, Krishna Noru, Harikrishna
Reddy, Prahlad Venkatapuram and Alexis Bjorlin. 2023. MTIA:
First Generation Silicon Targeting Meta’s Recommendation
Systems. In Proceedings of 2023 International Symposium on

†Rivos Inc., work done while at Meta Platforms Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISCA '23, June 17–21, 2023, Orlando, FL, USA.
© 2023 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0095-8/23/06...$15.00.
DOI: https://doi.org/10.1145/3579371.3589348

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579371.3589348&domain=pdf&date_stamp=2023-06-17

Computer Architecture (ISCA’23), June 17-23, 2013, Orlando,
FL. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3579371.3589348

1 Introduction
Machine learning (ML) workloads have become ubiquitous in

online activities. In recent years, these models have seen
substantial growth in size and complexity, which has contributed
towards their increased prediction accuracy and effectiveness.
However, at the same time, this growth has presented significant
challenges for the hardware platforms that are used for training
and inference of these models at very large scales. Total Cost of
Ownership (TCO) is one of the major constraining factors in
launching models to production in the datacenter, and power is a
significant component of TCO for these platforms. Therefore,
performance-per-TCO (and performance-per-watt) has become an
important metric for any hardware platform targeting these
workloads.

Deep Learning Recommendation Models (DLRM) [16] have
emerged as one of the most dominant workloads in Meta’s
datacenters [17][18]. These models combine traditional multilayer
perceptron (MLP) operations (referred to as fully connected or FC
at times) which are compute intensive, with embedding tables that
transform sparse features into a dense representation. These tables
contain wide vectors that are indexed randomly and are reduced to
a single vector that is then combined with data coming from other
layers to produce the final results [16]. While embedding table
operations have rather light compute requirements, their memory
footprint and bandwidth requirements are rather demanding due to
the nature of the data access pattern and size of the tables.

Figure 1 shows the historical and estimated future growth in
both complexity and memory footprint of the inference workloads
related to recommendation models in Meta’s production
datacenters. The dashed line shows the estimated growth in the
model's compute requirement while the solid lines demonstrate
the increase in the memory footprint. The gray solid line captures
the footprint of the device memory used to store embedding
tables, which is an important component of these models. The
level of growth in both compute and memory requirements is
certainly an issue that needs to be addressed, especially
considering how these workloads are typically run in the
datacenter.

2 Motivation
Traditionally CPUs have been used as the primary vehicle to

serve inference workloads in Meta’s production datacenters, but
they are not cost effective in keeping up with the demands of the
most recent workloads. To that extent, hardware acceleration has
been considered an attractive solution that can address power and
performance issues and provide a more efficient way of serving
inference requests while at the same time providing enough
headroom in compute performance for running future models.

Figure 1: Scaling trends for inference models

Figure 2 shows the estimated number of servers that are
deployed for serving inference workloads within the datacenter
over the past couple of years. The light solid line shows the
number of CPU-based servers, the dashed line shows the number
of servers equipped with the first-generation inference accelerator,
Intel NNPI [10], and the dark solid line shows the number of
GPU-based servers [12]. While the initial demand for increased
capacity was temporarily met using the NNPI accelerator, the
requirements for the inference models quickly outpaced the NNPI
capabilities and provided motivation for using GPUs. This
brought the additional advantage of leveraging the existing
ecosystem used already for training. Therefore, as can be
observed, the increased demand in model complexity is served
increasingly with GPUs as accelerators.

While recent generations of GPUs provide a lot of memory
bandwidth and compute power, they are not designed with
inference in mind, and therefore the efficiency of processing real
inference workloads is low. Developers use a myriad of software
techniques, such as operator fusion, shape specialization, graph
transformations and kernel optimizations to raise the efficiency of
GPUs. But despite these efforts, there is still an efficiency gap
which makes it challenging and expensive to deploy models in
practice.

Figure 2: Growth in server demand for inference workloads

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

Given the experience deploying NNPI and GPUs as
accelerators, it was clear that there is room for a more optimized
solution for important inference workloads. This optimal solution
is based on an in-house accelerator which is architected from the
ground up to address the requirements of demanding inference
workloads, specifically focused on meeting the performance
requirements of DLRM systems. However, while focusing on
DLRM workloads (given their ongoing variation and evolution
and the fact that the architecture is effectively constructed for
forthcoming generations of these workloads) it was also clear that
in addition to performance, the architecture should also provide
enough generality and programmability, to support future versions
of these workloads and potentially other types of neural network
models.

While creating a custom silicon solution opens the door for
ample innovation and specialization towards the target workloads,
creating an accelerator architecture for mass deployment in the
datacenter is a monumental task. The focus and strategy when
architecting the accelerator therefore has been on adopting and
reusing suitable pieces of technology, as well as tools and
environments, from vendors and the open-source community.
This not only improves the time to market, but it also leverages
the support and enhancements that come from the community and
vendors and reduces the amount of resources required for
building, enabling, and deploying such platforms.

The rest of this paper explains the undertaking of architecting
MTIA, Meta’s first accelerator chip targeting inference
workloads, and the learnings that came with it. The next section
details the accelerator’s architecture and its various provisioned
features and components. Section 4 goes over mapping an
example operator to this architecture, demonstrating how various
provisioned features are utilized to run the operator efficiently.
Section 5 provides an overview of the accelerator’s software stack
and section 6 describes our evaluation methodology and results.
Finally, section 7 discusses a few important lessons learned during
this development cycle.

3 Accelerator Architecture
Figure 3 shows the high-level architecture of the accelerator,

which is organized as an array of processing elements (PEs)
connected on a grid. The grid is connected to a set of on-chip
memory blocks and off-chip memory controllers through
crossbars on each side. There is a separate control subsystem with
dedicated processors and peripherals to run the system's control
software. The host interface unit which contains a PCIe interface,
associated DMA engines, and secure boot processor also sits
alongside this control subsystem.

Figure 4 shows the internal organization of the PE. A PE
consists of two RISC-V processor cores and associated
peripherals (on the left), as well as several fixed function units
specialized in performing specific computations or data
movements (on the right). In addition, each PE has 128KB of
local storage. A local interconnect establishes the connectivity

between processors, their peripherals and custom hardware
blocks.

Figure 3: High-level architecture of the accelerator

3.1 Fixed Function Units
Each PE has a total of five fixed function blocks and a

Command Processor which orchestrates and coordinates
execution of operations on these fixed function blocks. Functional
units form a coarse-grained pipeline within the PE, where data can
be passed from one unit to the next to perform successive
operations. Each functional unit can also access the data directly
within the PE’s local memory, perform the necessary operations,
and write the result back, without passing the data to other
functional units.

3.1.1 Memory Layout Unit (MLU)
This block performs operations related to copying and

changing the layout of data in the local memory. It can operate on
tensors with 4/8/16/32-bit data types. Operations like transpose,
concatenation, or reshape are performed using this block. The
output data can be sent to the next block directly to be operated on
immediately or can be stored in PE’s memory. For example, MLU
can transpose a matrix and provide the output directly to DPE
block for a matrix multiplication operation, or it can format the
data properly as part of the depth-wise convolution operation and
send it to DPE to perform the actual computation.

3.1.2 Dot-Product Engine (DPE)
This block performs a set of dot-product operations on two

input tensors. The first tensor is read and stored within the DPE
first, then the second tensor is streamed through the block and a
dot product operation is performed with all the rows of the first

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PE

XBAR

M M M M M M M M M M M M M M M M

XBAR

DDR Ctrl. DDR Ctrl.DDR Ctrl. DDR Ctrl.

LPDDR5 LPDDR5 LPDDR5 LPDDR5

XBAR

M M M M M M M M M M M M M M M M

XBAR

DDR Ctrl. DDR Ctrl.DDR Ctrl. DDR Ctrl.

LPDDR5 LPDDR5 LPDDR5 LPDDR5

XBAR

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

XBAR

DDR Ctrl.
DDR Ctrl.

DDR Ctrl.
DDR Ctrl.

LPDDR5
LPDD

R5
LPDDR5

LPDDR5

XB
AR

M
M

M
M

M
M

M
M

M
M

M
M

M
M

M
M

XB
AR

DD
R

Ct
rl.

DD
R

Ct
rl.

DD
R

Ct
rl.

DD
R

Ct
rl.

LP
DD

R5
LP

DD
R5

LP
DD

R5
LP

DD
R5

Control
Subsystem

(CCP)

Host
Interface

tensor. DPE can perform 1024 INT8 multiplications (32×32) or
512 FP16/BF16 multiplications (32×16) per cycle. Operations are
fully pipelined; performing multiplication of two maximum size
matrices takes 32 clock cycles. In case of INT8 multiplication, the
resulting output is stored in INT32 format, while in the case of
BF16 or FP16 multiplications, the result is stored in FP32 format.
The result is always sent to the next functional unit in the pipeline
for storage and accumulation.

Figure 4: PE’s internal organization

3.1.3 Reduction Engine (RE)
The reduction engine hosts the storage elements that keep

track of the results of the matrix multiplication operations and
accumulates them over multiple operations. There are four
separate storage banks that can be independently used to store and
accumulate the results coming from DPE. RE can load an initial
bias into these accumulators and can also send their contents to
neighbor PEs over a dedicated reduction network (discussed later
in this section). Upon receiving results over the reduction
network, RE accumulates the received values on top of the values
in one of the local storage banks. It can then send the result to the
next neighbor, to the SE, or store it in the PE’s local memory
directly.

3.1.4 SIMD Engine (SE)
This block performs operations like quantization/de-

quantization and nonlinear functions. Internally the block contains
a set of lookup tables and floating-point arithmetic units to
calculate linear or cubic approximation of nonlinear functions
such as exponentials, sigmoid, tanh, etc. The approximation
accepts INT8 or FP16 data types as inputs, producing an INT8 or
FP32 result at the output. The unit can receive its inputs directly
from the RE block or read them from the local memory. In
addition, this block is also capable of using its floating-point
ALUs to perform a set of predefined elementwise operations, such
as addition, multiplication, accumulation, etc.

3.1.5 Fabric Interface (FI)
This block acts as the gateway in and out of the PE. It connects

to and communicates over the accelerator’s on-chip network. It
formulates and sends memory access requests to on-chip and off-
chip memories, as well as system registers, and receives back the
data or write completions. It implements a set of DMA-like
operations that transfers the data in and out of PE’s local memory.
It also receives and transmits cache misses and un-cached
accesses from processor cores and allows other entities (other PEs
or the control subsystem) to access the PE’s internal resources.

3.1.6 Command Processor (CP)
In addition to hosting PE’s local memory and registers, the CP

block acts as the central processing unit that orchestrates
execution of various operations on the fixed function blocks
concurrently. It receives instructions from the two processor cores
in the PE, performs dependency checking, scheduling, and
tracking for those instructions, and dispatches them to the fixed
function units for execution. It contains two separate schedulers
(one for each processor core), a set of command queues, as well as
arbitration logic for accessing the local memory and register
resources.

The hardware provides a set of basic atomic primitives to
allow synchronization between the cores (within the PE or across
multiple PEs). These primitives are enacted by processors, which
allows atomic update to predefined registers, and can stall the
processor until certain conditions are satisfied externally (e.g., a
counter reaches a certain value). At the higher level, these
mechanisms are used for efficient implementation of software
constructs such as locks, ticketing locks, mutexes and barriers.
The logic that performs the atomic operations as well as the
relevant registers reside within the Command Processor and are
tightly integrated with the processor cores through custom
interfaces.

3.2 Processor Cores
Each PE contains two RISC-V cores that run the application’s

code and issue commands to the CP for offloading various
computations to fixed function units. The cores are single issue,
in-order cores, with a five-stage pipeline (AX25-V100, from
Andes Technology), and are heavily customized to suit the
functionalities needed. The set of customizations includes custom
interfaces, custom registers, custom instructions, and custom
exceptions. Custom interfaces connect cores to the CP to issue
commands to fixed function units and move data back and forth
between cores and local memory. Custom registers store the
command information that is sent to the CP upon issuing
commands. Custom instructions are added to start the desired
operation on each of the fixed function units. And finally custom
exceptions ensure correctness of each command issued to the CP
and raise an exception in case of illegal values in the command.

One of the processor cores is equipped with the RISC-V vector
extension, which adds extra flexibility to the PE and allows
implementing operations that do not map well to the existing fixed
function units. The vector processing unit contains 32 vector

Proc-A
(Scalar)

Proc-B
(Vector)

PE Interconnect

PLIC
(Interrupt
Controller)

Debug
Subsystem

Machine
Timer

Fabric Interface (FI)

MLU

DPE

RE

SERegs. LS
Mem.

Command
Processor

PE

To/From NoC

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

registers, each 64B wide and has the same width for all vector
functional units. It implements version 0.8.1 of the RISC-V vector
extension [23].

3.3 Local Memory (LS)
Each PE has total of 128KB of local memory to be used by

processors and functional units. The CP implements an arbitration
scheme for memory banks and coordinates accesses from cores
and fixed function units. Local memories are mapped to the
system’s address space and can be accessed by cores via regular
load/store instructions.

 There is an abstraction layer introduced on top of the local
memories to simplify usage and dependency checking between
operations that use them. This can be considered as further
extension of the concept of the buffet [1][2]. Each PE can define
circular buffers (CBs) that are mapped to the existing local
memory. Each CB is designated with an ID and has a pair of
registers that specify its size (depth) and starting address in the
local memory. In addition, each CB also implements a set of read
and write pointers to implement a hardware FIFO.

In a CB, read operations always read the data starting from the
read pointer and write operations always write data starting from
the write pointer. Like buffets, read and write operations carry an
offset which allows them to access a location other than the
current head or tail of the buffer (Figure 5). Fixed function units
use the CB IDs as their input/output operands; for example, a
matrix multiplication operation uses two CBs as its input
operands. Before allowing an operation to start, the Command
Processor checks the availability of the data in the input CBs and
space in the output CB. It allows the operation to start only if the
necessary element and space checks pass. Therefore, an operation
is guaranteed to have the necessary resources to complete and will
not stall the functional unit in the middle of its execution.

The Command Processor also uses the CB IDs to enforce
dependency checks and interlocks between different custom
instructions. It ensures that operations that access and modify a
particular CB are always executed in program order, while
operations that operate on different CBs or different regions of the
same CB can execute in parallel. This significantly simplifies the
dependency checks as opposed to using absolute local memory
addresses for enforcing such interlocks.

CBs also simplify realization of the producer-consumer
execution model between different operations. These operations
can be initiated by different cores or different fixed function units.
For example, a program can issue a series of DMA operations to
the hardware (which moves the data from an external memory
into a CB), following it up with a set of custom compute
operations (e.g., MATMUL) that uses that data, without requiring
an explicit synchronization between the two. The MATMUL
instruction is automatically stalled by the Command Processor
until enough data is brought into the CBs by prior DMA
operations, and is started immediately afterwards, relieving the
program from explicitly checking the availability of the data.

Figure 5: Reading from a Circular Buffer

While some instructions like DMA operations automatically
adjust the read and write pointers (as they move the data in and
out of the CBs, and hence produce or consume elements), other
custom instructions do not move the pointers. This allows data
inside the CB to be reused multiple times by different operations
before it is explicitly marked as consumed. Hardware provides
additional custom instructions that can adjust both read and write
pointers in each CB, allowing explicit marking of the data
elements as produced or consumed, when necessary.

3.4 Memory Subsystem and
Interconnect

In addition to the local memory within the PEs, the accelerator
also has 128MB of on-chip SRAM, organized as slices around the
grid. This on-chip memory can be used as addressable scratchpad
memory, or as a common, shared, memory-side cache. There are
four LPDDR5 controllers on each side of the grid, providing a
total of 176 GB/s (theoretical) off-chip bandwidth. The
accelerator can support a total of 128GB of off-chip memory
capacity. Memory addresses are distributed across these
controllers, and among the on-chip SRAM slices. When on-chip
SRAM is configured as cache, each four cache slices are
associated with a single memory controller and cache its
addresses.

The on-chip network that connects all the PEs and memories
together is based on the AXI interconnect with special
enhancements. The interconnects consist of two networks for
carrying memory and register accesses separately. The memory
access network is equipped with a multicast feature which allows
coalescing of requests from multiple PEs into one (if they are
made to the same set of addresses). A single request is then sent to
the memory blocks to retrieve the data and return it to all
requesting PEs. Multicast is only supported for the PEs that are
located along the same row or column in the grid however, and
cannot be used for an arbitrary group of PEs.

In addition to the main AXI based interconnect, PEs are also
connected to each other via a specialized network, called the

32B

Read Pointer

Write Pointer
Available elements

Read (Size=3, offset=1, stride=2)

reduction network. This is a unidirectional network that travels
only from north to south and from west to east. It carries partial
sums from the accumulators in the RE block of one PE to another.
Using this network, PEs can expediently accumulate the result of
their computation without having to save and restore it in
memory. The last PE in the row or column can then store the final
result in the memory, after all partial values are accumulated.

3.5 Parallelism and Data Reuse
Parallelism, locality, and data reuse play a significant role in

efficient utilization of limited hardware resources in any deep
learning accelerator. MTIA architecture has provisioned a set of
features to allow multiple degrees of parallelism and maximal
exploitation of temporal and spatial data reuse in neural network
models and operators, as discussed below.

Parallelism: The architecture provides support for multiple
levels of parallelism and overlapping of various operations. Data
level parallelism (DLP) is exploited by usage of wide vectors in
fixed function units as well as the vector processors. Multiple PEs
also can operate on the same task in a data parallel manner.
Instruction level parallelism is exploited in the Command
Processor, by allowing multiple outstanding operations to be
handled by different fixed function blocks simultaneously.
Memory level parallelism (MLP) is achieved by allowing many
outstanding requests to on-chip and off-chip memories from each
PE. And finally, thread level parallelism (TLP) can be achieved
by utilizing multiple PEs (or groups of PEs) to run parallel
threads, as well as by having two independent threads within each
PE. Threads within the PE can cooperate in performing a given
task, by one thread orchestrating the data movement and the other
one orchestrating the computation.

Caching: There are multiple levels of caching in various
blocks of the hardware to improve locality and reduce memory
bandwidth consumption. This includes instruction and data caches
in the processor cores, large on-chip last level cache, and caching
for input operands in the DPE block. The caching at the DPE level
allows the engine to hold data from both operand A and operand
B and save access to local memory upon hit.

Circular buffers / local memories: Circular buffers provide
the storage for holding input operands while the PE performs the
computations. Flexibility in adjusting pointers as well as
offsetting into any location within a circular buffer allows the
program to access each line of data multiple times, before
deciding to mark it as consumed.

Specialized reduction: Having a dedicated reduction network
not only offloads a large part of data transfer from the system’s
main on-chip network, but also provides a way for grouping PEs
together and using their local memories in an aggregate form.
This in turn allows storing a larger portion of input operands in
the PEs and reducing the bandwidth requirement for loading them
from off-chip memory. In addition, the DPE block utilizes
reduction trees (spatial sum) to calculate the output of a
multiplication operation [1][3][4], which is known to be more
energy efficient [5].

Multicasting: As mentioned earlier, the system’s NoC allows
coalescing requests from multiple PEs when they access the same
set of addresses in memory. This reduces memory bandwidth and
increases the energy efficiency of data movement by allowing the
data to be shared while reading it from memory only once and
delivering it to all requesters [1][6][7][8]

Figure 6 shows the die plot with the grid of PEs, surrounded
by on-chip SRAMs and off-chip DDR controllers, while Table I
lists the summary of the chip features and parameters.

Table I - Summary of MTIA features and parameters.

Parameter Value
Technology TSMC 7nm
Frequency 800MHz nominal (1.1 GHz max)
Instances 1.12B gates, 65M flops
Dimensions 19.34 × 19.1mm (373 mm2)
Package 43 × 43, ~2800 pins
TDP 25 W
Voltage Dual rail: 0.67V (logic), 0.75V (memories)
Host Connectivity 8× PCIe Gen4 (16 GB/s)

GEMM TOPS (MAC)
102.4 (INT8)
51.2 (FP16)

SIMD TOPS
Vector: 0.8 (FP32) / 1.6 (FP16) / 3.2 (INT8)

SE: 1.6 (FP16) / 3.2 (INT8)

Memory Bandwidth
Local memory: 400GB/s per PE

On-chip SRAM: 800GB/s
Off-chip DRAM: 176 GB/s

Memory Capacity
Local memory: 128KB per PE

On-chip SRAM: 128MB
Off-chip LPDDR5: 64GB (16 channels)

4 Mapping an FC Layer
To demonstrate how all the above-mentioned features work

together, let’s consider an FC operator that performs a matrix
multiplication operation in the form of CT = A×BT and see how it
maps to a sub-grid of PEs. The reason for performing the
operations in a transposed manner is to keep k as the inner
dimension for both tensors, to increase the efficiency of memory
accesses. Matrix A is assumed to be m×k and matrix B is assumed
to be k×n (hence BT will be n×k), producing output C which will
be an m×n matrix (or CT being an n×m matrix). Inputs are
assumed to have row major memory layout. When the inner
dimension (k) is not a multiple of 32B, the outer dimension (m or
n) stride is aligned to 32B boundaries for efficient data movement.
For simplicity, we will assume that all elements are of INT8 data
type.

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

Figure 6: MTIA die plot

As mentioned earlier, DPE works on blocks of
32(m)×32(k)×32(n) inputs, generating 32(n)×32(m) partial results
accumulated in the RE. This operation takes 32 clock cycles. In
order to feed the DPE’s pipeline, 32(m)×32(k) blocks of matrix A
and 32(n)×32(k) blocks of matrix BT must be brought from
external memory into PE’s local memory in 32 cycles, requiring
64B/cycle of bandwidth. To alleviate this bandwidth pressure, the
four accumulators in the RE block are used to accumulate 2×2
blocks of partial results, holding a total of 64(n)×64 (m) elements
of the output matrix. By using the accumulators in this manner,
we use every 32×32 input block twice, hence reducing the
external bandwidth requirement to 32B/cycle.

Tensor dimensions m, n and k are distributed in multiples of
64, 64 and 32 across the PE grid respectively. Each PE hence
works on a different sub-block of the larger result matrix in a data
parallel fashion. The reduction dimension (k) is distributed over
multiple PEs along the row (or column). This facilitates the usage
of the reduction network to accumulate partial results after
multiplication is completed. PEs pass the calculated partial results
to each other to accumulate and pass to the next PE. When two or
more PEs along a given row or column use the same block of
input data from either input matrix, the multicast feature of the on-
chip network is used to coalesce the requests from multiple PEs
and send a single request to the memory, further reducing memory
bandwidth requirements.

Figure 7 shows an example of distributing an FC operator with
dimensions of 512(m), 1024(k) and 256(n) on a 4×4 PE sub-grid.
The reduction dimension (k) is distributed across two PEs along
the same row and dimension m is distributed across four rows.
PEs in columns 0 and 2, and PEs in columns 1 and 3 participate in

row multicast-read of matrix A. Similarly, all PEs in each column
participate in column multicast-read of matrix BT.

Figure 7: Mapping an FC operator to a sub-grid

Within the PE, the operation is divided between the two cores
in a producer-consumer manner. Figure 8 shows the pseudocode
corresponding to each of the cores in the PE. Core0 issues a set of
DMA operations that move data from main memory into CB_A
and CB_B, used to store matrices A and B locally. In a parallel
thread, Core1 issues a set of matrix multiply (MML) instructions
that reads data from CB_A and CB_B respectively and stores the
results in an accumulator register. As can be observed, each block
of data is used twice to produce a partial result in each of the
accumulator registers. If the operation is the last iteration, the data
is marked as consumed in the CB by issuing a POP instruction,
otherwise the corresponding CB offsets are incremented to move
to the next block of data in the next iteration. At the end, the
reduction operation (REDUCE) is called to accumulate all partial
sums across PEs. The last PE in the reduction chain sends the data
back to main memory using the DMA operation.

The two cores in the PE must synchronize at the start of the
operation as only one of them performs the necessary
initialization tasks (e.g., setting up the CBs to use). But
afterwards, there is no explicit, per iteration synchronization; the
producer-consumer synchronization is taken care of by the
hardware: If the consumer (the MML operation) attempts to use a
CB that does not have enough data, hardware stalls the operation
until the producer (DMA operation) places enough data within the
CB, at which point it allows the matrix multiplication to proceed.
This asynchronicity decouples the producer and consumer threads
and allows the producer to move ahead and bring in more data for
later iterations.

PE[0,0] PE[0,2]

PE[0,0] PE[1,0]
PE[2,0] PE[3, 0]

PE[0,1] PE[0,3]

PE[1,0] PE[1,2] PE[1,1] PE[1,3]

PE[2,0] PE[2,2] PE[2,1] PE[2,3]

PE[3,0] PE[3,2] PE[3,1] PE[3,3]

PE[0,1] PE[1,1]
PE[2,1] PE[3, 1]

PE[0,2] PE[1,2]
PE[2,2] PE[3, 2]

PE[0,3] PE[1,3]
PE[2,3] PE[3, 3]

0

127
128

255
256
383
384

511
0 511 512 1023

0

127
128

255

0 511 512 1023m

k

n

k

A

BT

PE[0,0]
m: 0-127
k: 0-511
n: 0-127

PE[0,1]
m: 0-127
k: 512-1023
n: 0-127

PE[0,2]
m: 0-127
k: 0-511
n: 128-255

PE[0,3]
m: 0-127
k: 512-1023
n: 128-255

PE[1,0]
m: 128-255
k: 0-511
n: 0-127

PE[1,1]
m: 128-255
k: 512-1023
n: 0-127

PE[1,2]
m: 128-255
k: 0-511
n: 128-255

PE[1,3]
m: 128-255
k: 512-1023
n: 128-255

PE[2,0]
m: 256-383
k: 0-511
n: 0-127

PE[2,1]
m: 256-383
k: 512-1023
n: 0-127

PE[2,2]
m: 256-383
k: 0-511
n: 128-255

PE[2,3]
m: 256-383
k: 512-1023
n: 128-255

PE[3,0]
m: 384-1023
k: 0-511
n: 0-127

PE[3,1]
m: 384-1023
k: 512-1023
n: 0-127

PE[3,2]
m: 384-1023
k: 0-511
n: 128-255

PE[3,3]
m: 384-1023
k: 512-1023
n: 128-255

Figure 8: Pseudocode for the FC operator running in PE

5 Software Stack
The software stack for MTIA is designed with two main goals

in mind: be efficient for production, meaning achieve higher
perf/TCO than other best-in-class solutions, and at the same time,
be simple and straightforward to use, even simpler than available
alternatives. The software stack for MTIA is designed and built
around PyTorch to benefit from its capabilities and to achieve a
seamless integration with other components of the ML
infrastructure available in a production environment. The rest of
this section provides an overview of each component of the
software stack as shown in Figure 9.

ML serving platform: At the top of the software stack, we
have production-specific ML model serving platforms
(Application Layer as illustrated in Figure 9). These serving
platforms are operating on top of PyTorch and are mostly
hardware agnostic, supporting execution on heterogeneous
hardware systems including CPUs, GPUs, and accelerators like
MTIA.

PyTorch Runtime: A PyTorch Runtime integration for MTIA
was developed which provides necessary functionality and
features including MTIA Tensors, a host-side memory allocator,
and CUDA-like streaming APIs for scheduling the desired
operators to execute on the device. The runtime supports different
modes of model execution, including eager mode, as well as full
graph compilation and execution to maximize performance. It also
supports running models split into partitions spanning multiple
cards, providing the necessary synchronization and
communication channels between them.

Figure 9: MTIA’s software stack

Compilers: The next important component in the software
stack is a set of compilers which consists of multiple parts:

• A PyTorch FX-based ML model compiler which applies
several transformations and model-level optimizations to the
PyTorch graph represented as FX IR [19][20], and gradually
converts it into LLVM IR [21][22]. It is responsible for graph
optimizations which take advantage of the PE grid and MTIA’s
memory subsystem. It implements a tensor placement scheme that
takes a best-effort approach to keep producer-consumer data in
on-chip memory. It can also split a model into sub-graphs
intended to run across multiple cards and even across sub-grids
within the same chip.

• A DSL-based compiler (codename KNYFE) for ML kernel
development, which takes a short high-level description of an ML
kernel and produces low-level optimized C++ code. It uses low-
level hardware specific APIs to implement the ML operator and is
used extensively for developing many of the ML kernels used in
MTIA.

• LLVM-based compiler toolchain which converts LLVM IR
into an executable for the device. LLVM is used primarily due to
the RISC-V support it provides and is responsible for the lowest
level of optimizations like register allocation, in-lining and code
generation. Most major optimizations like tiling or scheduling of
the work and data among PEs are performed by the higher-level
compilers mentioned earlier.

Library of ML kernels: Another important component is the
library of kernels and ML operators that are used to construct the
ML models executing on the device. Many of these kernels are
developed using the DSL compiler mentioned earlier, but some of
the most performance demanding kernels, e.g., fully connected
(FC) layers and embedding bag (EB) layers, are developed by
experts directly in low-level C++ using exposed intrinsics to
ensure they can achieve the highest levels of performance possible
on the hardware.

Host driver and firmware interface: MTIA platform
software enables the host to access the accelerator device. It
manages the device lifecycle and resources, and it helps initiate
and track runtime operations on the device. This part of the stack

#--------------------------------Core0-------------------------------------
work = GetWorkForMyPE(...)
INIT CB_A, CB_B and CB_C # Setup circular buffers
multicast_A, multicast_B = JoinMulticastGroup(...)
Sync(...) # Synchronize with others
read_B = true
for m in range(work.m.begin, work.m.end, 64): # For every row of “A”...
 read_A = true
 for n in range(work.n.begin, work.n.end, 64): # ...read entire “B”
 for k in range(work.k.begin, work.k.end, 32):
 if read_A:
 DMA GetAddr(A, (m, k)), size=(64,32), CB_A, multicast_A
 if read_B:
 DMA GetAddr(B, (n, k)), size=(64,32), CB_B, multicast_B
 read_A = false
 read_B = false
#--------------------------------Core1-------------------------------------
work = GetWorkForMyPE(...)
Sync(...) # Synchronize with others
for m in range(work.m.begin, work.m.end, 64): # For every two chunks of “A”
 cb_offset_B = 0
 for n in range(work.n.begin, work.n.end, 64):# Multiply two chunks of “B”
 cb_offset_A = 0
 INIT RE acc with 0 # Initialize accumulators
 for k in range(work.k.begin, work.k.end, 32):
 MML acc=0,size=(32,32,32),CB_B,CB_A,cb_offset_B ,cb_offset_A
 MML acc=1,size=(32,32,32),CB_B,CB_A,cb_offset_B ,cb_offset_A+32*32
 MML acc=2,size=(32,32,32),CB_B,CB_A,cb_offset_B+32*32,cb_offset_A
 MML acc=3,size=(32,32,32),CB_B,CB_A,cb_offset_B+32*32,cb_offset_A+32*32
 if ((m + 64) >= work.m.end): # If last Iteration...
 POP CB_B, size=2*32*32 # ...mark “B” data as consumed
 else: # Otherwise...
 cb_offset_B += 2*32*32 # ...proceed to the next chunk
 if ((n + 64) >= work.n.end): # If last Iteration...
 POP CB_A, size=2*32*32 # ...mark “A” data as consumed
 else: # Otherwise...
 cb_offset_A += 2*32*32 # ...proceed to the next chunk
 REDUCE destination = neighbor PE or CB_C, size=(64,64))# Send to next PE
 if IsLastPEInReduction(...): # If last PE in sequence
 DMA PutAddr(C, (n, m)), size=(64, 64), CB_C # Write result to memory

Application Layer

PyTorch

AFG (FX Compiled
Subgraph Executor)

Eager MTIA
PyTorch Operators

MTIATensor,
Device Mem Allocator,

Stream Interface

MTIA Streaming API
MTIA Firmware Driver

MTIA Firmware

MTIA Kernels
Library

FX MTIA
Compiler

KNYFE (DSL)

FX
subgraphs

Compiled
executable

Precompiled
operators

PyTorch Framework
(Host)

PyTorch Accelerator Runtime
(Host)

Firmware Interface
(Host)

Firmware
(Device)

Compiler

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

is broadly split into two parts: the host software and device
firmware. The host software consists of the Linux device driver, a
device access library for providing a uniform device interface, and
a streaming API to interface with PyTorch, as well as software
tools and utilities for managing and monitoring the device.

Device firmware: The device firmware includes a ROM
based pre-boot firmware, secure boot firmware running on its own
processor, the Control Core Processor firmware running on the
control subsystem performing runtime and management
operations, and finally the PE monitor that runs on the PEs in the
compute grid, which schedules and monitors workloads running
on the PEs. The main control firmware is based on the Zephyr
Real Time OS [9].

6 Results
We evaluate the performance of the MTIA by comparing it

against a baseline accelerator (NNPI) [10] and against more
recently deployed GPUs. It should be noted that we report the
results collected with an under-development software stack, as we
believe this reflects the end-to-end performance and is
representative of a production environment. However, this stack is
not currently as optimized as the GPU’s software stack.
Consequently, there are cases where the GPU is more efficient,
but we are hoping to close this gap over time and have the MTIA
software stack deliver the full gains of the architecture across all
the DLRM workload space. We evaluate both operator-based
benchmarks as well as full DLRM models varying in complexity,
size, and accuracy. Since these accelerators are all based on
different hardware platforms, we first compare their system level
hardware specification (Table II). These platforms are the
following: Yosemite V2 server with six NNPI accelerator cards
[11], Zion4S server with eight Nvidia A100 GPUs [12], and
Yosemite V3 server [13] with twelve MTIA accelerator cards.

Table II - Inference hardware platforms

Metric Yosemite
V2 (6 NNPI)

Zion4S
(8 GPU)

Yosemite V3
(12 MTIA)

Power

System 298 W 4500 W 780 W
Card 13.5 W 330 W 35 W
Percentage 27.2 % 58.7 % 53.8 %

Compute
INT8 (TOPS/s) 50 × 6 624 × 8 104 × 12
FP16 (TF/s) 6.25 × 6 312 × 8 52 × 12

Memory

Type (device) LPDDR HBM LPDDR
Size (device) 16 GB × 6 40 GB × 8 32 GB × 12
BW (device) 50 GB/s × 6 1.5 TB/s × 8 150 GB/s × 12
Size (host) 64 GB 1.5 TB 96 GB
BW (host) 50 GB/s 400 GB/s 76 GB/s

Comms.

Dev.-to-Dev. PCIe NVLink PCIe
P2P BW (card) 3.2 GB/s 80 GB/s 12.8 GB/s
NIC BW 50 Gbps 400 Gbps 100 Gbps

While we can compare the absolute performance of MTIA
versus NNPI and GPUs, each device has different capabilities in
terms of compute throughput, memory bandwidth, and memory
capacity. They also operate under different power budgets.
Therefore, in our study we report perf/W (as a proxy for
perf/TCO, given the sensitive nature of TCO), because power is
an important factor in provisioning for deployment in the
datacenter. We use the total platform power divided by the
number of accelerator cards to determine power provisioned for
each accelerator, as opposed to using the maximum TDP for the
card.

6.1 Benchmark Performance
We first evaluate the performance of several important

operators and kernels that push the limits of the architecture and
are representative of main components in production DLRMs.
Table III shows the latency breakdown of a request in a
representative DLRM with batch sizes of 64 and 256. The model
has approximately 750 layers with nearly 550 consisting of EB
operators. For batch size of 64, FC dominates the execution time
followed by EB, while for batch size 256, EB dominates FC
slightly and the two together account for 62% of the execution
time. It should be noted that with larger input shapes, the kernels
are able to better amortize the setup costs, and reuse the data
more, hence achieving higher utilization of the fixed-function
units in the hardware.

Table III - Operator breakdown, medium complexity DLRM

Operator Batch size 64 Batch size 256
FC (Fully Connected) 42.10 % 32.4%
EB (Embedding Bag) 31.19 % 30.0%
Concat 2.86 % 11.5%
Transpose 8.47 % 5.9%
Quantize 1.55 % 5.3%
Dequantize 2.94 % 3.3%
BatchMatMul 3.30 % 1.7%
Others 7. 59 % 11.0%

Based on the breakdown, we use a set of benchmarks to assess

the efficiency of the MTIA’s hardware. While not full-fledged
workloads, these benchmarks allow exercising various shapes and
sizes for important operators (including corner cases) and shed
light on the potential deficiencies that might exist in the hardware.
GemmBench [14] is used to evaluate dense computation; it
creates a model composed of a chain of FC layers. In our
benchmark runs we focus on both FP16 and INT8 (quantized)
data, which requires additional quantize and dequantize layers.
TBEBench [15] is used to evaluate sparse computation, and
allows us to configure the batch size, number of tables, number of
rows per table, embedding dimension, and pooling factor of TBE
operators. BatchGEMMBench [24], ConcatBench [26], and

TransposeBench [26] are used to efficiently cover other
significant operators typically seen in recommendation models.
We also evaluate several elementwise kernels including quantize,
dequantize, and tanh.

Dense computation: We evaluate both INT8 and FP16 Fully
Connected (FC) layers (Figure 10 and Figure 11). When accuracy
is sufficient, INT8 quantization unlocks a potential 2x
improvement in FC throughput. For the set of shapes we evaluate,
the trend lines roughly track for MTIA and the GPU across INT8
and FP16, indicating that the software implementations are well
optimized across a range of arithmetic intensities. In many cases,
MTIA achieves 2x or greater performance per Watt, and is
particularly effective for low batch sizes which helps when
serving requests under stringent latency requirements. For large
batch sizes, the GPU is able to achieve higher utilization with the
increased amount of work so the perf/W gains of MTIA are lower.
Note that MTIA is most efficient when tensors can be streamed
directly from SRAM, which means that graph optimizations and
managing data locality are very important for good performance
at the model level.

Figure 10: INT8 FC performance

Figure 11: FP16 FC performance

Sparse computation: While a typical recommendation model
might include hundreds of EmbeddingBag (EB) operators, they
can be merged together into one or more TableBatchedEmbedding
(TBE) operators to amortize kernel launch overhead and increase
the work that can be parallelized across the device. Figure 12
shows the performance (in GB/s/W) for the TBE benchmark
running on MTIA and GPU for a set of representative operator
shapes. Note that we report performance in terms of GB/s here
because this benchmark is mostly memory bound, and measuring
bandwidth as opposed to lookups/sec provides better insight into
hardware utilization. Here we utilize the cache configuration of
the on-chip SRAM to take advantage of locality across and within
batches. In these examples, all table entries use 8-bit quantization
and the triplets shown in the graph describe the operator’s pooling
factor, number of rows in the table, and the embedding dimension
(elements per row). MTIA achieves between 0.6x to 1.5x the
perf/W of the GPU with the current kernel implementation.

Given the evolving nature of the software stack, we observe
that there is significant headroom for improvement: MTIA is
reaching just 10-20% of its memory bandwidth whereas the GPU
is achieving about 60% of its HBM bandwidth. To ensure that
there are no deficiencies in hardware, we used hand-written
kernels developed for RTL validation, and could observe
performance levels as high as 500 GB/s (more than 60% of
roofline) or 6 GB/s/W given sufficient locality in the SRAM. We
hope to close this gap by improving the software pipelining and
instruction scheduling of the TBE kernels.

Figure 12: TBE performance

Other operators: While FC and TBE tend to dominate
execution time, we found that other operators can be just as
important, especially given how much effort is spent optimizing
the former. We evaluated BatchMatMul, Concat, Transpose, and
several elementwise kernels for M=256, K=128, N=32, with
tensor data placed in SRAM and DRAM (Figure 13). These
operators tend to be memory bound which is exemplified by
BatchMatMul and Tanh, which reach more than 90% and 80% of
the SRAM bandwidth, respectively. When data is placed in the
DRAM, the efficiency drops down to around 40% on average,
because it is more difficult to hide the additional memory latency.
We believe implementation of data placement optimizations,

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

operator fusion, and minimizing data fetch from DRAM could
potentially mitigate this issue.

Figure 13: Performance of other operators

6.2 Model Performance
We examine the performance of five different representative

DRLMs, described in Table IV, which range from low to high
complexity. MTIA can run the same recommendation models that
run on NNPI and GPU. With the current level of maturity of the
software stack, MTIA achieves near perf/W parity with the GPU
and exceeds the perf/W of NNPI, while roofline modeling
indicates there is significant room for improvement as the
software stack matures further.

Table IV - DLRM models used for evaluation.

DLRM Model Size (GB) Complexity
(GFLOPS/batch)

Low Complexity 1 (LC1) 53.2 0.032
Low Complexity 2 (LC2) 4.5 0.014
Medium Complexity 1 (MC1) 120 0.140
Medium Complexity 2 (MC2) 200 0.220
High Complexity (HC) 725 0.450

Figure 14 shows the performance (in TFLOPS/s/W) across the

above-mentioned set of DLRMs. Compared to NNPI, MTIA
achieves 1.6x higher efficiency while compared to GPU, it
reaches 0.9x efficiency. There are two important factors to
consider in these results: the model characteristics and the level of
software optimization in the implementations. For low complexity
models, MTIA has a significant advantage over the GPU because
these models are dominated by FC layers with smaller input
shapes and MTIA handles this quite efficiently, e.g. LC2 shows
nearly a 3x improvement. For medium complexity models, MTIA
still sees an efficiency gain over the GPU, but it is lower because
FCs are less dominant, and the GPU software stack provides more
efficient implementations of other operators (with TBE and
aggressive operator fusion). For high complexity models, we see
that the GPU software stack is better optimized for large shapes,

and MTIA needs similar optimizations in order to achieve the
same or higher levels of efficiency. These initial results give us
insight into areas of the software stack that we should consider
focusing on in the future (e.g., large FCs, TBE optimizations,
operator fusion, etc.), as well as provide important learnings for
next-generation architecture which we discuss next.

Figure 14: Performance of DLRMs

7 Discussion
Building silicon is always a difficult, lengthy, and time-

consuming process, especially when done for the first time. For
MTIA, the resulting silicon needed to achieve high performance,
handle a wide range of recommendation models, and provide a
level of programmability that would allow rapid deployment of
models in production. This section highlights our important
observations and reflections regarding architectural choices, and
how they impacted the software stack, performance, and
developer efficiency. These lessons also act as guidance for
improving and enhancing future generations of architecture.

Dual-Core PEs: The choice of having two separate processor
cores within the PE and allowing both to control the fixed
function units provided a great degree of parallelism and
flexibility at the thread level, allowing decoupling of compute
from data transfer. While this decoupling simplified the
programming and alleviated performance issues when a particular
operator is instruction bound (by providing twice the overall
instruction throughput), using both cores correctly and efficiently
in software took some effort. Details such as synchronization
between the two cores for initialization and clean up before
execution of a job were difficult to get right the first time, but
afterwards were leveraged in all workloads through proper
integration in the software stack.

General-Purpose Compute: Addition of general-purpose
compute in the form of RISC-V vector support proved to be a
judicious choice: There were operators which were developed or
gained importance after the architecture definition phase, and
hence the architecture did not include any offload support for
them. Operators like LayerNorm and BatchedReduceAdd were

straightforward to implement with vectors, and these
implementations proved superior to versions using scalar cores
and fixed function units.

Automated Code Generation: Some of the architectural
choices made regarding how the fixed function units are
integrated and operated in the PE have made the automatic code
generation by compiler difficult. Processor cores must assemble
and issue explicit commands to operate any of the fixed-function
blocks. While this is done through addition of custom instructions
and registers to the processors, it still requires assembling and
passing many parameters to each offload engine to specify the
details of the operation. Controlling a heterogenous set of fixed-
function units from within the program and balancing the data
flow between them is a challenging problem for the compiler.
Achieving desired levels of utilization on the fixed-function
blocks across various input shapes and sizes is also difficult.
While our DSL-based KNYFE compiler makes it easier to write
kernels and handles many of these issues automatically, it requires
learning a new DSL.

Circular Buffers: Addition of the circular buffer abstraction
greatly simplified the dependency checking between custom
operations that work on the same region of memory, as the
circular buffer IDs were used as units of dependency checks
(similar to register IDs in the processor cores). They also
simplified the implementation of the producer-consumer
relationship between fixed function blocks and processors, as the
hardware holds off the operation until enough data (or space) is
available in the circular buffer without any need for explicit
synchronization at the software level. The flexible addressing
mechanism also allows arbitrary access to any location within a
circular buffer, which simplifies data reuse as different operations
can access different segments within the circular buffer multiple
times. However, this requires software to explicitly manage the
space within the buffer and decide when the data should be
marked as consumed, which might create difficult to debug
correctness issues if not performed properly.

Memory Latency: Both PE and on-chip SRAM memories
turned out to have longer than typical access latencies. Having
lots of clients accessing the PE memory complicated the
arbitration scheme and added latency cycles. For fixed function
blocks, this latency gets rolled into the operation’s latency, but
when processors try to use the local memory, software must resort
to techniques such as unrolling and software pipelining to hide
latencies, which increases the register pressure. This becomes
exacerbated when developing kernels on the vector processor, as
it limits the amount of register grouping that can be performed
and hence increases the dynamic instruction count.

Placement of the on-chip SRAMs over the perimeter, while
evenly distributing requests over multiple slices, created a large
degree of non-uniformity in memory access latencies. Since the
requests are always completed after the last piece of data arrives,
the overall latency gets impacted when making larger than
minimum requests. While in most cases this latency could be
hidden by prefetching data into the PE’s memory, in cases such as
EmbeddingBag operators with small pooling groups the latency
gets exposed because the memory access pattern is not known in

advance and there are not enough outstanding requests to hide the
latency.

Cache Coherence: While the system implements a shared
memory paradigm, there is no hardware support for cache
coherency. In this shared memory system, inter-PE coherency is
not required as different PEs operate on their dedicated part of the
dataset in a data parallel manner. However, intra-PE coherency
sometimes causes correctness issues: If the same set of memory
addresses are touched by the two processor cores, or by the fixed-
function units and a core, or addresses are reused by the same core
across different operators, the cached copies of these addresses
must be explicitly flushed from caches, otherwise the stale data
could be used.

Architecture Hierarchy: Recommendation models for the
accelerator vary greatly in size and complexity in the layers and
operators they employ. While large layers when mapped on the
PE grid can extract desired utilization level from available
hardware resources and amortize the overhead of job creation and
dispatch, the smaller layers or lower batch sizes have to resort to
techniques such as exploiting sub-graph parallelism and fusion to
get to the same level of utilization. Even though there is plenty of
room at the software level to perform such optimizations or
reduce the overheads of deploying jobs, we believe some
provisioning at the architecture level would have made addressing
this problem easier. This is because for smaller jobs the grid must
be divided into smaller sub-grids so that each can handle a smaller
job, and the task of setting up and tearing down these sub-grids is
part of the system’s firmware. We believe having another level of
hierarchy in the architecture itself, for example clusters of PEs,
might have made this problem easier to solve as it provides
natural units of isolation and management, compared to a
monolithic grid of PEs.

In the first generation of MTIA, we built an architecture that
can gain significant levels of efficiency for DLRM workloads
compared to GPUs and other accelerators. We hope to continue to
increase this efficiency over time as the software stack matures.
The experience of writing kernels, building a compiler, and
optimizing models for this architecture has given us great insights
into what features are more impactful. We are hoping to integrate
and leverage all the lessons learned on both hardware and
software sides of the project in future generations of architecture.

ACKNOWLEDGMENTS
This project has been the culmination of dedicated and
enthusiastic work of many talented teams and individuals. While
it is impossible to mention every team and every person here, the
authors would like to specially thank the following teams: Infra
Silicon, AI Systems Hardware-Software Co-Design, Compiler
Backend, Firmware, Emulation, Release to Production (RTP),
Sourcing and Operations Engineering (SOE), and Hardware
Platforms. We also would like to express our sincere gratitude to
Misha Smelyanskiy, Olof Johansson, Kumar Sundararajan, K.
Rajesh Jagannath, Xiao He, Jongsoo Park, Changkyu Kim,
Mahesh Maddury, Brian Ko, Kaushal Gandhi, Tom Ulrich,
Pritesh Modi, Manish Modi, Krishanth Skandakumaran, Teja
Kala, Bhargav Alluri, Hao Jin, Adam Bauserman, Sameer

MTIA: First Generation Silicon Targeting Meta’s Recommendation
Systems ISCA’23, June 2023, Orlando, Florida USA

Shripad, Meghana Reddy Swamyreddygari, Sharat Kumar, Dick
Tam, Prasad Addagarla, Di Wu, Puneet Anand, Sanjay Kumar,
James Hegeman, Nadav Rotem, Fangran Xu, and Shuqing Zhao.
We would also like to thank all our vendors for their collaboration
and the support that they provided during the course of the
project. This work would not have been possible without their
close engagement.

REFERENCES
[1] V. Sze, Y. Chen, T. Yang, and J.S. Emer, Efficient Processing of Deep Neural

Networks, Synthesis Lectures on Computer Architecture, Morgan & Claypool
Publishers, 2020.

[2] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago, K. Hegde, R. Venkatesan, S.
W. Keckler, C. W. Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data orchestration,” in
Proceedings of Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[3] Y.-H. Chen, J. Emer, and V. Sze, Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks, in Proceedings of
International Symposium on Computer Architecture (ISCA), 2016.

[4] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks IEEE
Journal of Solid-State Circuits (JSSC), 51(1), 2017.

[5] Y. Harata, Y. Nakamura, H. Nagase, M. Takigawa, and N. Takagi, “A high-
speed multiplier using a redundant binary adder tree,” in IEEE Journal of
Solid-State Circuits (JSSC), 22(1):28–34, 1987.

[6] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” in IEEE
Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS),
2019.

[7] T. Krishna, H. Kwon, A. Parashar, M. Pellauer, and A. Samajdar, Data
Orchestration in Deep Learning Accelerators, Synthesis Lectures on
Computer Architecture, Morgan & Claypool Publishers, 2020.

[8] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S.
Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-L. Cantin, C. Chao, C.
Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami,
R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R.
Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D.
Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z.
Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N.
Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G.
Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson,
B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2017.

[9] https://zephyrproject.org
[10] M. Anderson, B. Chen, S. Chen, S. Deng, J. Fix, M. Gschwind, A. Kalaiah, C.

Kim, J. Lee, J. Liang, H. Liu, Y. Lu, J. Montgomery, A. Moorthy, S. Nadathur,
S. Naghshineh, A. Nayak, J. Park, C. Petersen, M. Schatz, N. Sundaram, B.
Tang, P. Tang, A. Yang, J. Yu, H. Yuen, Y. Zhang, A. Anbudurai, V. Balan,
H. Bojja, J. Boyd, M. Breitbach, C. Caldato, A. Calvo, G. Catron, S.
Chandwani, P. Christeas, B. Cottel, B. Coutinho, A. Dalli, A. Dhanotia, O.
Duncan, R. Dzhabarov, S. Elmir, C. Fu, W. Fu, M. Fulthorp, A. Gangidi, N.
Gibson, S. Gordon, B. Padilla Hernandez, D. Ho, Y. Huang, O. Johansson, S.
Juluri, S. Kanaujia, M. Kesarkar, J. Killinger, B. Kim, R. Kulkarni, M. Lele,
Huayu Li, Huamin Li, Y. Li, C. Liu, J. Liu, B. Maher, C. Mallipedi, S.
Mangla, K.K. Matam, J. Mehta, S. Mehta, C. Mitchell, B. Muthiah, N.
Nagarkatte, A. Narasimha, B. Nguyen, T. Ortiz, S. Padmanabha, D. Pan, A.
Poojary, Y. Qi, O. Raginel, D. Rajagopal, T. Rice, C. Ross, N. Rotem, S. Russ,
K. Shah, B. Shan, H. Shen, P. Shetty, K. Skandakumaran, K. Srinivasan, R.
Sumbaly, M. Tauberg, M. Tzur, S. Verma, H. Wang, M. Wang, B. Wei , A.
Xia, C. Xu, M. Yang, K. Zhang, R. Zhang, M. Zhao, W. Zhao, R. Zhu, A.

Mathews, L. Qiao, M. Smelyanskiy, B. Jia, V. Rao., “First-Generation
Inference Accelerator Deployment at Facebook,” in Arxiv, 2021. [Online].
Available: https://arxiv.org/abs/2107.04140, unpublished.

[11] J. Ehlen, J. Clow, B. Wei, D. Chong, “Facebook Multi-node Server Platform:
Yosemite V2 Design Specification,” Open Compute Project,
https://www.opencompute.org/documents/facebook-multi-node-server-
platform-yosemite-v2-design-specification

[12] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan, X. Liu, M.
Ozdal, J. Nie, J. Park, L. Luo, J. Yang, L. Gao, D. Ivchenko, A. Basant, Y. Hu,
J. Yang, E. K. Ardestani, X. Wang, R. Komuravelli, C.H. Chu, S. Yilmaz, H.
Li, J. Qian, Z. Feng, Y. Ma, J. Yang, E. Wen, H. Li, L. Yang, C. Sun, W.
Zhao, D. Melts, K. Dhulipala, KR. Kishore, T. Graf, A Eisenman, K. K.
Matam, A. Gangidi, G. J. Chen, M. Krishnan, A. Nayak, K Nair, B. Muthiah,
M. khorashadi, P. Bhattacharya, P. Lapukhov, M. Naumov, A. Mathews, L.
Qiao, M. Smelyanskiy, B. Jia, V. Rao, “Software-Hardware Co-design for Fast
and Scalable Training of Deep Learning Recommendation Models,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA), June 2022.

[13] M. Haken, J. Clow, Y. Li, B. Wei, D. Chong, T Ky, “Yosemite V3: Facebook
Multi-node Server Platform Design Specification”, Open Compute Project,
https://www.opencompute.org/documents/ocp-yosemite-v3-platform-design-
specification-1v16-pdf

[14] GemmBench. [Online]. Available:
https://https://github.com/pytorch/glow/blob/master/tests/benchmark/GemmBe
nch.cpp

[15] TableBatchedEmbeddingBagBench (TBEBench). [Online]. Available:
https://github.com/pytorch/glow/blob/master/tests/benchmark/TBEBench.cpp

[16] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park, X.
Wang, U. Gupta, C. Wu, A.G. Azzolini, D. Dzhulgakov, A. Mallevich, I.
Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko, S. Pereira, X.
Chen, W. Chen, V. Rao, B. Jia, L. Xiong, M. Smelyanskiy “Deep Learning
Recommendation Model for Personalization and Recommendation Systems,”
in Arxiv, 2021, [Online]. Available: https://arxiv.org/abs/1906.00091,
unpublished

[17] U. Gupta, C. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks, B. Cottel, K.
Hazelwood, M. Hempstead, B. Jia, H.S.Lee, A. Malevich, D. Mudigere, M.
Smelyanskiy, L. Xiong, X. Zhang, “The Architectural Implications of
Facebook’s DNN-based Personalized Recommendation,” in Proceedings of
the International Symposium on High Performance Computer Architecture
(HPCA), February 2020.

[18] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law, P.
Malani, Andrey Malevich, Satish Nadathur, Juan Pino, Martin Schatz,
Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch, Xiaodong Wang,
Yiming Wu, Hector Yuen, Utku Diril, D. Dzhulgakov, Kim Hazelwood, Bill
Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, Mikhail
Smelyanskiy “Deep Learning Inference in Facebook Data Centers:
Characterization, Performance Optimizations and Hardware Implications,” in
Arxiv, 2018, [Online]. Available: https://arxiv.org/abs/1811.09886

[19] J. K. Reed, Z. DeVito, H. He, A. Ussery, J. Ansel, “Torch.fx: Practical
Program Capture and Transformation of Deep Learning in Python,” in Arxiv,
2022, [Online]. Available: https://arxiv.org/abs/2112.08429

[20] https://pytorch.org/docs/stable/fx.html
[21] C. Lattner, V. Adve, “LLVM: a compilation framework for lifelong program

analysis & transformation,” in Proceedings of International Symposium on
Code Generation and Optimization, 2004.

[22] https://llvm.org/docs/LangRef.html
[23] https://github.com/riscv/riscv-v-spec
[24] BatchGemmBench. [Online]. Available:

https://github.com/pytorch/glow/blob/master/tests/benchmark/BatchGemmBen
ch.cpp

[25] ConcatBench. [Online]. Available:
https://github.com/pytorch/glow/blob/master/tests/benchmark/ConcatBench.cp
p

[26] TransposeBench. [Online]. Available:
https://github.com/pytorch/glow/blob/master/tests/benchmark/TransposeBench
.cpp

